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Being one more attempt to convey in words how modern physics explains the Universe. The language of physics
is mathematics, so rather than invent analogies, I will try to explain it from the math, but using words, not 
mathematical symbols or equations.

Here, to start out, is the result:

“Every particle and every wave in the Universe is simply an excitation of a quantum field that is 
defined over all space and time.”1

If you are already cool with quantum mechanics, special relativity and gauge fields, you can now skip to section
6.

1. The language of physics
To repeat: Mathematics is the language of physics. That’s the main point, so you now may skip to the last 
paragraph of this section if you so desire, but you will be missing something.

First, two basic assumptions: 

• Without going into ontology, we will assume that there is a reality “out there” to observe, that what we 
perceive with our senses (and instruments) really exists in some meaningful and useful way.

• Understanding it will only be possible if it is governed by universal natural laws2 and so we also shall 
assume their existence. We speak of a law when we have determined that a given previous event 
(called the cause) in certain specific and well-defined conditions always gives rise to the same 
subsequent event (the result) across countless observations. The word “always” here means “every time

1 Lancaster and Blundell, 1.
2 This idea is as old as Epicurus or Lucretius.
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we have observed it”.3 So we consider that this will always be true in the future too. The Sun will indeed 
appear to rise tomorrow morning. If you disagree, stop reading now.

Just as mathematics starts with some unprovable definitions or axioms, so without thinking about it do we 
employ other metaphysical, because unprovable, preconceptions (like the existence of a dimensionless point). 
As math builds a structure on these axioms, so do we build one on these assumptions plus observed, empirical 
facts. The result is a representation of nature which we call a physical theory.

Observation, with or without special equipment, proceeds when our sense organs are activated by any of many 
signals (light or sound waves, chemical substances, molecules of all sorts, the touch of larger objects). Only a 
very limited subset of those signals are able to trigger our sense organs. These then send electro-chemical 
impulses into our nervous system, where our brains massage and organize them into meaningful and useful 
forms. Current theories think that this is done by continually executing processes which compare the incoming 
data to structures already in the brain. The brain then uses the difference in order to improve the perceived event
image (à la Bayes). According to this model, understanding depends on information already in the brain and this 
may be inexact or even wrong. (Think of optical illusions.) So our perception, our handling of sensory data, 
depends on the state of the brain previous to the incoming data – to what the brain expects to observe. This is 
obviously a source of error. Kant could not have agreed more.

A million or so years ago, “useful” data was that which helped our remote ancestors to survive. As we evolved 
through natural selection, our cognitive processes matured and developed along with our understanding of the 
world around and within us. We started using language, spoken then written, to express and communicate our 
thoughts. Language helped us cooperate (part of the time), not only to defend ourselves but to come up with new
ideas for survival -- or simply to make life more pleasant.

Our languages are tool kits which allow expression of some ideas better than others. Our ancestors needed 
words like tree or tiger, they did not need gene or quark. Today we do. As we have discovered new phenomena 
which our former vocabulary was not able to describe, we have invented new words and concepts, often making 
use of older concepts by extending their meaning or putting them together in new ways. In physics, we have 
been obliged to consider quantum objects as behaving like waves and particles at once. Would it not be better to 
have a new term for something which is neither – or both? If that word were, say, wavicle, would that aid in our 
description of nature, once we assimilated the word the way we have assimilated the words wave and particle?

In any case, language is a cognitive function which is therefore limited by the structure and functioning of our 
brains. Just as languages are imperfect but evolving means of expression, so are our mathematics.4 We build on 
one mathematical theory (say, algebra or Euclidean geometry) until it is no longer adequate and we are forced to
find a new one (calculus or Riemannian geometry of curved space). So our use of math evolves along with our 
concepts and paradigms. Just compare Newton’s equations to Einstein’s or those of quantum mechanics. (Don’t 
worry about understanding them, just admire.)

Newton (force): (1)

Newton (gravitational force): (2)

Einstein (gravity): (3)

Schrödinger (QM): (4)

Dirac (QFT): (5)

(Dirac’s equation may look simpler than Schrödinger’s, but trust me, it’s not.) The first just uses multiplication (m 
times a)5; the second, division; the third, tensors (that R thing with subscripts); the fourth, derivatives; and the 
fifth the whole lot, even if that’s not obvious from the compact way it is written. This evolution suggests that one 

3 This second assumption comes in fact from Hume, among others, so we’re in good company.
4 I mean it is not a good mapping of reality. Math is perfect. Just ask a mathematician.
5 I’m cheating here, since the a for acceleration is the second derivative of position.
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day our equations may get still better (and maybe more complicated) and approach even closer to describing 
reality precisely, i.e., become better approximations to a description of nature. An essential feature of the later 
equations (Einstein, Schrödinger, Dirac) is that when they are applied to the situations Newton studied, they 
approximate to Newton’s equations. That is a Good Thing.

If the math of physics has become quite hairy, as shown in the above equations, understanding what it means in 
terms of observable, intuitive physical phenomena has become more and more difficult. (Remember the 
wavicle?) Some of us may have just reached the point where we can almost imagine everything as made up of 
tiny particles separated by relatively vast stretches of empty space. But now, physics tells us that everything is 
made up of fields. This is the idea behind quantum field theory (QFT). Fields are where the buck stops, at least
for the moment.6 Like the bottom turtle, they are not made up of anything else (well, as far as we know).7 The 
particles which we see as the constituents of all the stuff around us are vibrations in quantum fields, fermion 
fields for matter, boson fields for forces. If you have trouble imaging a proton field interacting with an electron 
field through a vector boson field, you are not alone. It’s much easier to imagine them as particles, so that’s what 
we do. Is that because our brains are built to comprehend particles better than fields? Or just habit? Or the 
problem of representing our ideas with language?8 Do we need a new vocabulary?  (Probably.) Or do our brains 
possess “hard-wired” notions of structures which they impose on the world, as some philosophers have 
supposed? Maybe we should just give up and leave the scientists with their equations?

In any case, our understanding of nature is constantly evolving. We labored for a long time with Newton’s 
relatively simple equations, then added Maxwell’s more complicated ones, then Schrödinger’s and Einstein’s. 
Since then, we have added math evolved by Dirac, Weinberg, Salam, Higgs, Feynman and many others. The 
language is math, but –  just like English or French – it’s evolving in terms of what it expresses.

We must avoid going Platonic here. There is neither cave nor any reason to consider that we are looking at 
shadows of the Ideal, whatever that might mean. In spite of our initial assumptions, we don’t really know what’s 
out there. Which doesn’t keep us from trying to cope with it by proposing models. Especially since our methods 
seem to work so well. The results are quite astounding in their accuracy and precision. But we must not forget 
that our perception of the Universe is limited both by our sense organs and by the structure of our brains.

In summary:

• We assume the existence of some reality of which our senses give us a meaningful although limited 
perception.

• We also assume the existence of universal natural laws which we study by empirical methods, confident 
that this procedure can lead to a better understanding of nature.

• We understand our empirical data by analysis using mathematical methods which evolve with our 
understanding. The language of physics is mathematics.

2. Transformations and constraints of Special Relativity 
Physicists can’t take on the whole Universe at once, so they study specific, isolated parts of it referred to as 
systems. This method of taking on only a limited, isolated collection of objects is called reductionism. Although 
it is decried in some quarters, it works pretty damn well. 

What concerns us now is, what are the things you can do to such a system without actually changing the system
itself. You can rotate it in any direction, or move it from here to over to there or look at it in a mirror. If the system 
remains visibly unchanged under these transformations (physics speak), then it is said to be symmetric, or 
invariant, under the transformation.

Some examples. You can rotate a sphere, say a baseball through any angle in any direction and, if you ignore 
the seams, it still looks the same: This is spherical symmetry. You can rotate a candle through any angle around 
its lengthwise axis and it looks the same: This is obviously cylindrical symmetry. A cube is more special; you can 
rotate it through an angle of of 90° around an axis through the mid-points of two opposite sides and the result is 

6 We are ignoring far-out ideas for which there is no evidence, like strings, branes and loops.
7 Some scientists think that space itself is made up of elements. This is the theory of loop quantum gravity.
8 Is language necessary for thought?
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indistinguishable from the original. A pancake must be either up or down, not in between.9 Although we are 
talking about the system’s looking the same, the important point is that this requires that the equations which 
define it be the same before and after, regardless of the values of the parameters which you plug into them. And 
that helps us with the math: Knowing that the system possesses a symmetry forces us to eliminate non-
symmetric forms of the equations, thus (hopefully) simplifying the problem.

The transformations just mentioned are static, each happens once then is finished. But you can make dynamic 
(moving) transformations too. You can look at the system from a moving vehicle like a train. As long as the 
observation vehicle moves with a constant speed and direction relative to the system it’s observing, or vice 
versa, the equations describing the system must look the same. Such a constant-speed, unaccelerated 
observation platform, or reference frame, is called an inertial system. The mathematical changes due to going 
from, say, a stationary reference frame to an inertial, moving one are called Lorentz transformations, part of 
the theory of Special Relativity (SR) published by Einstein in 1905 (just to give an idea of the time frame 
involved), although the transformation had been discovered the year before by Lorentz. In addition to such 
boosts due to relative motion at constant velocity, Lorentz transformations also include ordinary rotations. 

SR has a real surprise for us and it is crucial: It says that whether you are sitting still (relative to something) or 
moving inertially, then if you measure the speed of light, you will always get the same result. To the nearest 
meter per second, this is 299,792,458 meters per second (mps), but we will take the approximate value of 
300,000 km/sec. Think: If I am moving past you in my car at 100 Km/sec and a high-speed TGV10 Is moving past
you at 200 Km/sec in the same direction, I will measure the TGV’s speed relative to me as 100 Km/sec. This is 
intuitive. But If I am moving at half the speed of light past you, 150,000 Km/sec, and a photon (light particle) is 
moving past me, both you and I will measure the photon’s speed as 300,000 Km/sec. I will not think it is moving 
at 150,000 Km/sec. This is not intuitive but it is true, and it has been confirmed in countless experiments.

According to SR, the speed of light (In a vacuum) is constant – always the same, as long as you 
measure it from an inertial (non-accelerating) reference frame. 

Starting from this “law”, it is actually quite easy to derive the equations of the Lorentz transformation by using 
only algebra and simple geometry. So the invariance of the speed of light is what requires Lorentz 
transformations. Physicists then say that in order to be valid, their equations all must be invariant under Lorentz 
transformations. Without doing the math, it is difficult to seize the importance and usefulness of this requirement.

The invariance of the speed of light has important consequences. We measure speed in, say, kilometers per 
second, or km/sec, length divided by time. This means that the invariance of the velocity of light imposes a 
constraint on the relation between length and time. The result is that we can no longer consider physical events 
taking place in space and time separately, but only in a four-dimensional spacetime. Fortunately this constraint 
is not very important for velocities well below that of light, which is why we managed quite well without it for a 
long time, as in the first example with the TGV.

In addition to the two assumptions about reality and laws of nature, we now have acquired three no-longer-new 
requirements.

1. The speed of light in a vacuum is constant, always measured by an observer in an inertial frame of 
reference to be the same. 

2. The equations of physics must be invariant under Lorentz transformations – rotations and boosts. This is
referred to as being covariant. It means the equations which describe nature must take the same form 
before and after the transformations. This Is so important I will restate it: The laws of physics must be 
Lorentz-invariant. 

3. The invariance of the speed of light imposes constraints on the relation of space and time which means 
we must understand them not as two concepts, but connected together as spacetime.

Mathematically, the equations of the Lorentz transformation show clearly that we can no longer take space and 
time to be independent. We must consider the four coordinates of time and location together as what’s called a 
4-vector, usually written in the order (t, x, y, z).11 A Lorentz boost changes not only where the studied object is 
(its spatial coordinates) but also how long it is there (its temporal coordinate). The equations lead to fun facts like

9 Ok, bad example. One side of a pancake has all those little holes in it.
10 Train Grande Vitesse, high-speed train. The French TGV cruises at something like 250 km/sec
11 4-vectors are manipulated mathematically using tensors and matrices, so the necessary amount of math just shot up.
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these:

• The faster you go relative to somebody else, the slower he thinks your clocks run, including your internal
body clock. This leads to the twin paradox: A twin who takes a joy ride in a space ship comes back 
younger than one who stayed at home on Earth. This was portrayed quite vividly in the movie 
“Interstellar”. Note that the errant twin must accelerate up to speed and then stop (i.e., decelerate) and 
turn around (a rotation) to come back, so she is not always in an inertial state of constant relative 
motion. That is why she does not think the twin who stayed home is younger than she is.

• The faster you go, the thinner you get along the direction of motion. A result of this is that ...

• … it is often impossible to say whether one event occurred before or after another, which means that the
notion of simultaneity is no longer tenable.

• I can’t keep myself from jumping ahead and pointing out that Einstein’s theory of gravity, General 
Relativity (GR), says that clocks run more slowly in a stronger gravitational field. This means that a 
clock on Earth at sea level runs slower than one on the International Space Station – or on a GPS 
satellite. You might want to say that gravity slows down time, but that’s not really true. In their own frame 
of rest (where they are not moving, meaning x, y and z are constant and only time changes), all clocks 
run at one second per second.12

Here’s a fun example about that subject of simultaneity. Leonard Susskind has updated the classic example of a 
pole vaulter and a barn to a stretch limousine and a garage for a VW beetle. As seen by an observer who is 
stationary relative to the garage, which has doors open at both ends, the limo, if it moves at a speed close to that
of light, will be contracted so that it might fit all into the garage at once. In particular, the observer will see the 
following sequence of events:

1. Limo front enters garage front door;

2. limo tail enters garage front door, because the contracted limo can fit in the garage;

3. limo front leaves garage back door.

But the limo driver rather sees the barn as being contracted, so there is no way he can fit into it all at once. He 
sees the following sequence:

1. Limo front enters garage front door;

2. limo front leaves garage back door;

3. limo tail enters garage front door.

Note the reversal of the order of events 2 and 3. Time ordering and, so, simultaneity are out the door (and not 
only of the garage)!

In summary:

• The speed of light in a vacuum, measured in any inertial frame of reference, is always 
299,792,458 m/sec. 

• This leads to the Lorentz transformation laws between two inertial systems and the necessity of using 4-
dimensional spacetime.

• The equations of physics must be invariant under Lorentz transformations (called covariant).

• Among the interesting results of Lorentz-invariance is the loss of the notion of simultaneity.

3. Fields: electric, magnetic and gauge
Physics is not just about moving objects (mechanics), it’s also about electricity and magnetism, together 
constituting electromagnetism (EM). This subject was elucidated already in the 19th century by James Clark 
Maxwell, whose four famous equations describe all of EM. Maxwell published these equations in 1861, 44 years 
before Einstein published SR. These equations possess two amazing properties. 

12 Whatever that may mean.
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1. Maxwell’s equations can be solved as a wave traveling at a speed which is explicitly given in terms of 
two well-measured quantities and calculation shows it to be 300,000 Km/sec – the speed of light! And 
there’s just one such speed. So Maxwell prefigured Einstein’s SR. 

2. Maxwell’s equations are already Lorentz invariant. (Newton’s are not.)

Maxwell’s equations also confirmed one more concept which was to become primordial for modern physics – the
concept of a field – and, in addition, a gauge field (much more later).

We know that EM talks about electricity and magnetism and so about electric and magnetic fields. These fields 
had been discovered by Michael Faraday in 1821. A field is a physical quantity which has a value at every point 
in space and time. It may be a scalar which simply has a value everywhere, like temperature, about 22°C 
indoors as I write and about 6°C outside. Or it could be a vector, meaning it has a direction as well as a value. 
An example of this would be the wind, which here now has, say, a value of 25 Km/sec and a direction of 
westerly, meaning it blows from west to east. Electric and magnetic fields are also vectors. The electric-field 
vector points from a negative electric charge toward a positive one. The magnetic-field vector points from the 
south to the north pole of a horseshoe magnetic. (The particular directions are conventions, they could be 
reversed and all would be well.)

Maxwell found that both the two EM fields could be defined in terms of two other fields, one a scalar and the 
other a vector. And lo, together they constitute a 4-vector, that thingy in 4-dimensional spacetime which 
transforms by the Lorentz transformations. So we can think of EM as really about one thing, a 4-vector field 
called the EM vector potential. 
One can do a transformation of the EM potential which is said to be local, meaning the change is not constant 
everywhere. Until now, we have considered transformations which were the same in all of space. A rotation, for 
instance, can be described by a single angle of rotation, so it is considered to be a global transformation.13 
Local transformations can be quite different. Imagine (if you can) rotating one corner of a cube through 90° about
some point and another corner through only 45° about that point. Our poor cube would not be much of a cube 
any more. 

Here’s what is so great about that. It turns out that there are types of local transformations (not the same 
everywhere) of the EM vector potential which do not change the form of Maxwell’s equations! This is because 
the vector potential itself is not something we can measure. We can only use it to calculate the electric and 
magnetic fields, which we can measure. In the jargon, we say that Maxwell’s equations are invariant under 
local transformations of the EM vector potential. 

For historical reasons, the EM vector potential is called a gauge field and its allowed transformations are gauge
transformations. Think of trains in the old days, when different countries had different distances, called gauges,
between the rails. The passengers didn’t notice the gauge – once they had changed to appropriate cars. This is 
likely the origin of the term gauge in physics. Like it or not, the word “gauge” remains to describe one of the most
important concepts in modern physics. 

To take home: We can have identical physical situations for different values of the gauge fields. This is because 
we can not measure gauge fields, only the other, physical fields which are calculated from them. The fact that 
different gauge fields give the same measurable field can be seen as a redundancy in our description of nature 
– different  things which lead to the same result.

Just to whet your appetite, here is where we are going. All the four forces of physics are due to invariance under 
local transformations of gauge fields. Stay tuned...

Notice that so far, we have not used the dreaded word “quantum”. It’s time now to take the plunge.

But first, a summary:

• Maxwell’s equations for EM fields not only can be expressed in a Lorentz-invariant way, but solutions 
show the existence of plane waves with a speed of 300,000 km/sec -- light waves. 

• Maxwell’s equations can be expressed in terms of a 4-d vector potential.

• Certain local transformations of the vector potential do not change the physical fields of EM. These 
transformations are called gauge transformations and the vector potential a gauge field. The vector 

13 Remember, rotation means that all objects are rotated about a common point, the center of rotation.
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potential is not measurable and so a transformation of it represents a redundancy in the system of EM.

4. Operators in Quantum Mechanics (QM)
Now things get hairier, so you may want to rest now with a hot cup of coffee … or a cold beer. 

Up until now, we have discussed what is called classical physics. In physics, the word “classical” has nothing to 
do with style or expressiveness; there is no such thing as “romantic” physics.14 But as soon as we bring in QM, 
we are not talking about classical physics any more. QM is really a mathematical theory, a set of objects and of 
prescriptions for doing calculations on them. While it is difficult to explain the operations involved, the results can
be stated, although often difficult to understand completely.

You probably have heard that on a microscopic scale, things we measure no longer are required to have a 
continuous range of values. For instance, instead of taking on any value between 1 and 10, say, 7.39, they may 
only have integral values: 1, 2,... 10. On a microscopic scale, such quantum phenomena clearly show evidence 
of the granular nature of some things. For instance, the energy of an electron in an atom can only take on certain
distinct, separated values, the differences of which are seen in the spectrum of colors of light they emit. When 
you heat a piece of iron, like the coil on an electric stove, it glows red because the electrons In the atoms are 
radiating electromagnetic energy with the wavelength we perceive as the color red. These phenomena are 
things that physicists can observe and measure. But we want to have an explanation of why or, at least, how 
they come about.

Microscopic and sub-microscopic phenomena like this are explained by using quantum mechanics. QM is a set
of rules for calculating things and is quite general in scope. By itself, it doesn’t explain anything. In order to study 
a particular phenomenon, we must furnish more information -- the properties of the system in question, the 
forces at play and any initial conditions. These might be the initial positions and momenta and the masses of two
elementary particles. There are two ways of getting to the quantum version of phenomena: 

• If classical equations for the domain exist, we can “quantize” them. 

• Otherwise, we are forced to invent the quantum version. In order to do this, we use clues and tricks, 
probably the most important one of which is the requirement of Lorentz symmetry. We will use this 
method in QFT. 

Important, even crucial point: The very basis of QM is based on the notion of commutation rules for operators. 
What do those two things mean?

In classical physics, we measure things like mass, position and velocity. In fact, physicists prefer momentum, 
which is the product of mass and velocity in low-energy, non-quantum, classical physics. How do we go from 
classical equations of continuous energies to quantum ones? Mathematically, what we do is modify our 
equations by replacing those physical measurables, position and momentum, by operators. These are not like 
telephone operators, if you remember them, but more like surgeons, who operate on someone, thereby 
changing them. The process of defining operators in place of simple variables is called quantization, because it 
leads us to QM.

The position and momentum operators have the curious but essential property that if you apply them in one 
order, say position before momentum, you won’t get the same result if you measure them in the opposite order, 
momentum first. Physicists say these operators do not commute. The difference between the two orders of 
operation is a very tiny number whose magnitude is equal to Planck’s constant, 

 =  6.62607015×10−34 J Hz.  ⋅
This non-commutation of operators is one of the fundamental characteristics of QM. Similar results hold for other
pairs of quantities, like energy and time, which also depend on their order of measurement.15 Such pairs of 
variables are called complementary or conjugate pairs. Many physicists consider these commutation 
relations to be not a result of QM but its very basis. They lead to the famous Heisenberg uncertainty 
principle16, which says that in the case of a pair of conjugate variables, the precision with which we can 

14 There is no such thing as “woke” physics either, although a few individual physicists may be more or less woke.
15 Actually, time usually is not considered an operator, which is important. See my paper on symmetry and groups.
16 Which is therefore not an independent result.
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measure one of them is limited by the precision of measurement of the other. It’s give and take. 

One physical interpretation of the simultaneous measurement of position and momentum, is that in order to 
measure momentum, we look at a moving particle whose position we therefore cannot precisely measure. But 
the uncertainty is not a result of insufficient measuring equipment, it is built into QM itself. We will never be able 
to measure the two quantities better.

This is as good a moment as any to insist on the importance of two fundamental numbers used in QM – I and . 

• The first is called, both by physicists and mathematicians,  and is equal to the square root of -1,
. Yes, minus one. You may protest that such a number cannot exist, it is not real. We agree, it 

is not real, so it is called imaginary. In math, it allows the construction of so-called complex quantities, 
composed of real and imaginary parts, and there are rules governing their manipulation. The use of 
complex quantities allows us to employ math ideas without which we just could not do QM. 

• We’ve already met the other number, Planck's constant, h, usually divided by  and written . 

The difference of the non-commutating variables is just the product of  and . Both the momentum operator17 
and the Schrödinger equation cited above contain these two quantities. In spite of this, the values of all 
measured quantities, including momentum and energy, turn out to be real, not imaginary.

Some everyday examples, really analogies, of non-commuting operations might be filling and emptying a cup of 
coffee. Filling and then emptying does not give the same result as emptying and then filling; only the latter 
ordering leaves you a delicious brew to drink. Simple math gives examples like addition and multiplication. 
Suppose I act on the three numbers 2, 4 and 6 by adding the first two and multiplying by the third: That gives 
(2+4)*6 = 6*6 = 36. But if I multiply first, I get (2*4) + 6 = 8 + 6 = 14, not at all the same result.18 Ordering is 
especially important. In QM, it’s fundamental.

This is all very well and good, but if position and momentum are operators, what do they operate on? The 
answer was published by Erwin Schrödinger in 1926, thereby assuring him a Nobel Prize as well as having his 
picture on post-war Austrian banknotes until he was bumped aside by the generic (and fake) architectural 
designs of euro notes. But I digress... Schrödinger derived an equation in which the operators operate on a thing
called the wave function. In the same year, Max Born showed that the absolute square of the wave function 
could be interpreted as the probability that the system studied was in a particular state. And so QM became 
probabilistic. The wave function was therefore referred to as a probability amplitude, called an amplitude 
because it must be squared in order to give a probability. 

If such operators operate on particular wave functions called eigenfunctions, the result is simply the same wave
function multiplied by the value (the eigenvalue) of the quantity represented by the operator. These eigenvalues 
are the set of sometimes-but-not-at-all-always discrete, generally discontinuous values the quantity represented 
by the operator is allowed to take on. It’s really simple:

(operator for X) x (eigenfunction of X) = (eigenvalue of X) x (eigenfunction of X).

More mathy, an energy eigenfunction might behave like this:

,

where  is the energy operator (designated an operator by its hat},  is the energy eigenfunction with energy
, the eigenvalue of the energy. This is a very simple form of Schrödinger’s equation, a hairier form of which we 

saw in equation (4). The solution eigenfunction then has a square which is the probability that the system has 
energy .

The message to take home is that assuming physical quantities like position and momentum to be operators 
quantizes them and renders them non-commuting. Then the Schrödinger equation may only have solutions for 
discrete (discontinuous) values of parameters like energy, as in the case of orbital electrons around the nuclei of 
atoms. The solution to the equation then can be used to calculate the probability that the system is in the state 
given by the eigenvalue. This procedure shows clearly the much-discussed probabilistic nature of QM.

You may want to read that last paragraph one more time.

17 In the x representation. but you don’t need to know that.
18 A still different result comes from 2*(4 + 6) = 2*10 = 20.
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About now, you may be wondering where this wave function is. Answer: In an abstract mathematical space 
called a Hilbert space.19 More math is required in order to explain that, so we’ll skip over it and go on sticking to 
words. Just be aware that physics proposes the existence of many spaces, not only for “ordinary” spacetime but 
also for spin, isospin and other quantities. These are internal spaces though, we cannot go into them from our 4-
d spacetime. We’ll get to that subject In a moment. 

In summary: 

• QM “quantizes” a system by promoting variables to operators, conjugate pairs of which do not commute.
Non-commutation leads to the Heisenberg uncertainty principle, which expresses limits on the 
simultaneous measurement of the pair. It is not due to faulty experimental equipment, but is built into 
QM. 

• The allowed values of physical variables are given by their eigenvalues, which are in some cases 
discrete, not continuous.  

• The solutions to Schrödinger’s equation are wave functions which represent specific states of the 
system. The modular square of the wave function gives the relative probability that the system is in the 
state of the wave function.

So QM, because of the quantization of variables and the resulting non-commutivity of the operators, introduces 
possible discrete values of parameters; and it trades in definite values for probabilities, certainty for uncertainty.

Remember we said earlier that QM is really a mathematical theory, a set of objects and of prescriptions for doing
calculations on them. It’s a way of calculating. We have not yet considered a real physical object.

5. Relativity and symmetry in QM:  spin
What we have discussed so far is standard, non-relativistic QM, meaning that it is not covariant under Lorentz 
transformations. Now we have to apply what we know about symmetry under transformations . The first step is 
to require the equations we use to be compatible with SR, i.e., Lorentz-invariant. The equations should look the 
same if we observe the system after rotating it or while we are moving inertially, with constant velocity. Now we 
are working in relativistic QM, or RQM. We then come up with not one, but three possible equations for 
describing free particles (Don’t worry, you don’t have to remember these.): 

• one for particles with spin zero, the Klein-Gordon equation;

• one for particles with spin ½,  the Dirac equation;

• and one for particles with spin 1, the Proca equation.20

Oops, did I say spin? Uh... an explanation is obviously in order.

But first, why bother? We will see reasons below, but an important one comes from a theorem published by 
mathématicienne Emmy Noether in 1918. The theorem explains the link between symmetries, like those we are 
considering, and conservation laws. Conservation of quantity X means that we can measure X at any point in the
life of the isolated system and it will always be the same. Noether’s theorem says that symmetries give rise to 
conservation laws and explains how (mathematically, of course). Specific examples include the conservation of 
momentum, due to symmetries under translation (displacement); of angular momentum, due to rotational 
symmetry; and of energy, due to symmetry during the passage of time.

In the absence of forces, like friction, momentum is conserved, meaning you don’t speed up or slow down, but 
coast along forever. Such momentum is more commonly referred to by non-physicists as inertia. A similar thing is
true when you are not moving along in a straight line, but rotating, like a spinning ice skater. Yes, I said rotating, 
like we were talking about at the beginning of section 1. Angular momentum is conserved, meaning that in the 

19 Much of QM concerns abstract objects which only exist as mathematical concepts or formulas. But images (like 
analogies) of these abstract objects can be set up, or imitated, in real spacetime in such a way that the real objects 
behave like the abstract-math ones. Such analogical objects are called representations. If that’s too much, don’t worry 
about it.

20 When we say a spin value of, say, 1, we mean one unit of spin measured in quantum terms as a multiple of  , the Planck
constant divided by 2.
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absence of forces, you just keep on turning. It’s the conserved (constant) angular momentum of a top which 
keeps it upright, before it slows down and falls over. A gyroscope also functions by conservation of angular 
momentum. 

Spin is a sort of angular momentum. We can’t see anything spinning, nor does the theory suggest anything that 
does. But the equations for spin behave just like those for angular momentum. In fact, they are identical in their 
form. It’s just that they are not for ordinary angular momentum, but for something else, which is called spin. The 
spin of the electron was discovered in 1922 by Walther Gerlach, acting on an idea of Otto Stern. The experiment 
showed not only that electrons behave in an inhomogeneous magnetic field as if they were spinning, but that the
spin must have value of  and the component of it we measure is oriented either up or down relative to the 
magnetic field. Conservation of angular momentum must take spin into account in the calculation.

Now hold on tight. As I said, we cannot see what is turning to produce spin. In order to explain this angular-
momentum-which-is-not-quite-angular-momentum, we suppose that it is not turning in the same 3-dimensional 
space as angular momentum like that of our top. It is in its own separate space, a space called an internal 
space, as opposed to the exterior space of spacetime. I’ll pause a moment to let that sink in.

…

Yep, there are other spaces than the 4-d one we think we live in – mathematically, at least. Spin occurs in such a
space, which can have different dimensions than the 3-d one we all know and love, or the 4-d spacetime of 
Einstein. Because it lives in another space, we cannot measure spin directly. But it can have effects which are 
observable in our day-to-day spacetime, so we can infer it from experiments like that of Stern and Gerlach. In a 
reaction, it is the total angular momentum, i.e., the sum of the 4-space angular momentum and the spin which is 
conserved. This is another reason for considering spin like angular momentum.

So the three equations mentioned above occur for spin spaces of different dimensionality. If the spin space has 
no dimensions (imagine that!), the particle described is a scalar with spin 0. If the spin space is 2-d, the particle 
is a spinor of spin ½ and is said to live in spinor space. If it is 4-d (really twice 2-d), the particle is a gauge 
boson of spin 1.

If you prefer, you can think of these other, internal spaces as just convenient interpretations of the math, which 
looks like that for a space but in terms of other quantities than length, time, momentum and so on. But I find the 
Universe of all those spaces to be far richer, indeed, quite fascinating. If the equations look like the equations of 
space and are transformed (more or less) like equations of space, chances are they represent a duck … I mean,
a space. Your choice.

And yet, the spinor space is not completely independent of “ordinary” spacetime. Indeed, one can show 
mathematically (but I won’t) that a rotation in spacetime through a certain angle entails a rotation spinor space 
too, but of half that angle.21 The factor of ½ originates in the spin value of ½ . In particular, what we see as a 
difference of up an down in ordinary space (180°) corresponds to a change through only 90° in spinor space. 
Hmm...

There is yet another aspect to this situation. Particles whose spin is an odd multiple of ½ (½, 3/2,...) are 
fermions. Particles whose spin is an integral number – 0, 1, 2, etc., – are bosons. The essential point here is 
the distinction between fermions of non-integral spin and bosons of integral spin. The existence of these different
values of spin comes out of the theory of Lie groups, which describes transformations like rotations or Lorentz 
transformations, the latter being the source of spin.22 Classical angular momentum is due to symmetry when 
rotations are done in normal spacetime; spin comes from rotations in spin space.

You may now skip the next paragraph, but if you do, you’ll miss something. 

If you are still with me, the group which describes Lorentz transformations is in fact a product of two groups, 
each having either zero or half-integral spin. Since pairs made up from combinations of 0 and ½ can give 0 (½ - 
½), ½ (½ + 0) or 1 (½ + ½), these are the allowed values of spin for the particles represented by the three 
equations already mentioned. No experiment has discovered an elementary fermion with spin other than ½, 
although many composite particles exist with spin 3/2, 5/2 and so on.

21 This is too complicated to derive here. See my document on symmetry and QFT.
22 The Lie algebra, an instantiation or example of the Lie group, for the Lorentz transformation is really a pair of rotational 

(or unitary) groups (SU(2), since you asked), each in 2-d, for a total of 4-d. Intéressant, non?

QFT in words 10  2024-02-27 14:35:26



While we’re on the subject of fermions (remember, half-integral spin) and bosons (integral spin), you will be 
interested to know that:

• Fermions are the particles which constitute matter. This is because, according to the Fermi exclusion 
principle, no two fermions are allowed to occupy the same state. If they could, they would, and there 
would exist absolutely no structure of any kind, such as that of baobabs, aardvarks or us.23

• Bosons do not constitute matter but are the particles which carry forces. (We will see why shortly.)

In summary:

• We must make QM relativistic by requiring its equations to be Lorentz-invariant. This procedure leads to 
three relativistic equations for free particles of spin zero, ½ or 1.  Their solutions represent fields.

• Spin is so called because it behaves mathematically exactly like the equations of normal angular 
momentum. But spin ½ is in an internal space proper to the particle, not in the external space of 
spacetime. Nevertheless, conservation of angular momentum requires the inclusion of spin. In an 
interaction, spin may not be conserved, but the total angular momentum, spacetime angular momentum 
plus spin, is. And that’s a good reason for considering spin to be a form of angular momentum.

• Particles of half-integral spin -- ½, 3/2 and so on -- are called fermions and make up the matter in the 
universe. Particles of integral spin – 0, 1, 2 and so on – are called bosons and carry forces.

So much for the basics. Now for stuff yet farther out!

6. On to QFT
Welcome back. A quick review:

• According to SR, the speed of light in a vacuum will always be measured by an observer in an inertial 
(non-accelerating) reference frame to be the same, 300,000 Km/sec. Keeping a velocity, a spatial 
distance divided by a time, constant leads to mixing of space and time in equations, which prohibits our 
considering space and time as separate. We must work in 4-d spacetime.

• SR requires the equations of physics to be Lorentz invariant, unchanged under Lorentz transformations, 
which may be rotations or boosts, changes of velocity which pass us from one inertial system to another.
Maxwell’s equations of EM are already Lorentz invariant.24

• The way to QM is through quantization of variables, replacing them by operators on a wave function. 
Operating on eigenvectors, they return eigenvalues, often discrete, of the variable they represent. The 
magnitude of the square of the wave function evaluated at a particular state is the probability that the 
system is in that state.

• Particles have spin of values 0, ½, 1 or other multiples of ½. Spin behaves mathematically and 
physically like angular momentum, but in its own internal space.

• Particles with half-integral spin are fermions. Elementary fermions, the stuff of matter, only have spin of 
½. Particles with integral spin are bosons and carry forces. 

Stated thus simply, that’s not so hard. The next step can follow one of three different paths, all of which are valid 
and useful, some more so in certain situations.

6.1. Second quantization – many particles
Using all this and symmetry, we can deduce the equations of motion for three types of free particles: scalar (spin 
0), spinors (spin ½, fermions) and vector bosons (spin 1). By “free” particles, I mean with no other particles or 

23 Again, this is too complicated to go into here. Suffice it to say that the commutation relation for fermions is not the 
difference in applying two operators in opposite orders, but the sum.

24 To be complete, we should require invariance under transformations of the Poincaré group, which comprises Lorentz 
transformations plus translations (displacements in space).
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fields around to complicate things. It’s as if each was all alone in the Universe. Having written the equations, we 
can solve them. The solutions are fields which are expressed as sums of terms, each one multiplied by a 
“weight” parameter. The “terms” themselves represent plane waves of differing energy and momentum. They 
behave a lot like harmonic oscillators, such as pendulums. By “behave like”, I mean their equations are similar. 
This is nice, because physicists have been studying these beasts for a long time and understand them really 
well. But studying one lone particle, with no others about to drop in and chat, is not very interesting for the 
particle or for us. So we need to go further. 

I don’t know who thought of this, or how, but the trick is to repeat what we already did in order to get to QM, 
where we quantized the position and momentum by converting them to operators. For QFT, we do the same 
thing again, but this time, we quantize the free-particle fields, the solutions to the three equations of motion. 
Since each field is a sum of terms, we must also quantize the coefficients of the terms, meaning we treat them 
as operators too. When we do this, we discover that the quantized coefficients do not all commute: The result of 
applying one of them after another depends on their order. Because of this property, they now can be added 
together or multiplied (no more complicated than that) in ways which make them operators for the creation, 
annihilation or counting of quanta (chunks) of energy. And hey, we can take these energy quanta as … particles! 
So this trick, logically called second quantization, allows us to express the results of field theory in terms of 
particles and gives us a mathematical technique for creating or destroying any number of them. This is a great 
improvement over equations for a single particle.

As Matthew Schwartz says: “At the risk of oversimplifying things things a little, that [second quantization] is all 
there is to quantum field theory. The rest is just quantum mechanics.”25

Our original free particle needs no longer to feel rejected and abandoned. It now has company. Note, though, 
that all its new friends are just like it, the same kind of particle. Not just social interaction, but some variety would 
be nice.

6.2. Interactions – local transformations and gauge invariance
It turns out there is another trick we can use, based on symmetries. We already know that the equations of 
motion of the particles are Lorentz invariant because we wrote them that way. But that was under global Lorentz 
transformations, the same everywhere. Taking the gauge invariance of EM as a clue and remembering that 
rotations are a subset of Lorentz transformations, we can look to see what happens if we make our equations 
locally invariant under appropriate rotations. The rotations in question are called unitary transformations and 
they have the property that they conserve a type of wave-function product called an inner product. Inner 
products are used to calculate the probability amplitudes for the different states of the system, so this is a Good 
Thing, since we do not want the observable properties, even if they are only probabilities, to change. Invariance, 
remember?  

An essential component of our mathematical toolkit is something called a derivative. A derivative calculates the 
rate of change of a quantity. That means how much one quantity is altered as another, variable quantity, such as 
position or time, changes. The first quantity is then said to be a function of the second. Acceleration, the rate of 
change of the speed of your car, for instance, is the difference in speed at one moment and the next divided by 
the time elapsed between the two moments. That is a time derivative, because you have a difference in time in 
the denominator of the calculation. If you are walking in the mountains, the slope you are struggling to conquer is
the difference in the altitude divided by the horizontal difference between the two points. That’s a space 
derivative, since the denominator is a distance in space. In QM, we have both types, because we are using 4-
vectors which measure space and time and we want the rate of change with respect to both.

The problem is that when we take a derivative of our locally transformed function, we can’t calculate its change 
just by taking the difference of the values of the function at the two points. We must also take into account the 
fact that the transformation is different from one point to the other. Rather than transform the difference, we must 
do something to the function at, say, the second point in order to make it as if it were evaluated at the first point, 
where the transformation is the same. Only then can we take the difference. This calculation can be done and 
the result adds a new, extra term to the derivative. Since this term allows us to connect the state of the function 
at one point to its state at another, it is called a connection. When it is added to the derivative, the result is 
called the covariant derivative. The equation in terms of the covariant derivative is covariant too, meaning it 

25 Schwartz, Matthew D, Quantum field theory and the standard model, 20.
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does not change under the local transformation. With an ordinary derivative, the equation would no longer be 
covariant.

An analogy comes from a simple financial model, calculating the difference in the prices of a commodity in two 
different countries. You can’t just subtract the price in one from that in the other, you must take into account the 
difference in currencies, the exchange rate. If I want the difference in price in something between France and the
USA in euros, I must first change the USA price in American dollars to euros by using the exchange rate, and 
then take the difference. Tho exchange rate is therefore a kind of connection.26 

We are interested in matter particles, so we consider one, two or three fermions. (We’ll see why this choice in a 
moment.) In the latter two cases, we take them to have equal masses in order to make the equations easier to 
solve. Doing a local transformation adds a term or terms to each equation. The extra terms are not arbitrary, they
come from taking the derivative of the transformation operating on the free-particle field.27 This gives the usual 
derivative term for the field plus one or more additional terms due to the transformation, the number depending 
on the dimension of the group, which is just the number of particles. In the case of a global transformation, the 
transformation is constant, so its derivative (its rate of change) is zero and gives us no problem. But in order for 
our equations to be covariant in the case of a local transformation, we must finagle them so as to cancel the 
extra terms from the derivative of the transformation. This is why we use the connection term in the covariant 
derivative – to make the equation covariant by canceling out the extra term due to the local transformation.

Let’s consider first the relatively simple case of a single fermion, such as an electron. Its equation does not stay 
the same under a local unitary transformation, but picks up an extra term. In order to deal with this, we change 
our derivative to a covariant derivative with an added connection which is a product of constant terms and a new 
4-vector field. Consistency of the equations also dictates how the field must transform and – lo, behold – it is just
like the vector potential of classical EM. In fact, it is the vector potential, the gauge field.

This result is a striking success for several reasons.

• By its transformation rule, the connection field can be recognized as the EM vector potential, the gauge 
field, used to calculate the electric and magnetic fields.

• Using the covariant derivative, the equation is now Lorentz-invariant under the transformation. 

• If we write out the covariant derivative, the extra term is a product of the electron (fermion) and vector 
fields, so it represents the interaction between the two. This seems logical, since we started with the 
equation for an electron and identified the connection (gauge) field as the vector potential, the EM field 
whose particle is the photon. We can now calculate the interaction between an electron and a photon.

The particle form of light, the photon is a massless vector boson (spin 1), and from the Proca equation we also 
know how that transforms under the same complex (local) rotation. Since we want the interaction of the electron 
with a photon, we need to include the photon too. Whew! So now we have the electron plus the photon plus the 
product (interaction) term. 

(electron) + (photon) + (interaction).

And when we look at the result of the local transformation of this equation, we see that it is conserved 
unchanged. And it’s the same gauge invariance found in Maxwell’s equations of EM. 

Once more, with feeling. We start by doing a local unitary transformation on the equation of state (Dirac 
equation) for an electron. Rather than adding the resulting extra interaction term to the equation, we can include 
it by redefining the derivative in the Dirac equation. This is logical, since the derivative depends on how the 
system changes from one point in spacetime to the next. This covariant derivative now includes an extra term 
which takes into account the change in the transformation between nearby points. Since the additional term 
serves to connect the two points, it is called a connection. This is generally considered to be a more satisfying 
reasoning for inclusion of the extra term. It Is the one assumed when giving the usual explanation of gauge 
invariance. 

26 Schwichtenberg, Physics from finance. Maldacena, The symmetry and simplicity of the laws of physics and the Higgs 
boson. On-line.at arxiv.org/abs/1410.6753.

27 Using something called differentiation by parts (the product rule), a way of taking a derivative of an object of which more 
than one part can change.
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The field governing the interaction is due to transformation by the gauge field.28

How do we interpret these results? Well, we have already said that electrons are fermions are matter particles, 
and that photons are bosons are force-carrying particles. The photon was necessary in order to guarantee 
gauge invariance of the free-electron equation and so the photon is called a gauge particle. We can extend this 
kind of treatment to a group of two or three fermions, and we have the following cases:

• In the single-fermion case, the single force-carrying gauge particle is the massless photon of EM.

• In the two-fermion case, there are three force-carrying gauge particles, which are interpreted to be the
 and the  particles of the weak interactions. Alas, experiments show that these three particles are 

very far from being massless or of equal mass. But don’t worry, we have a plan, to be divulged in the 
next section.

• In the case of three fermions, interpreted to be the three quarks in a proton or neutron, there are eight  
force-carrying gauge particles, which are the massless gluons which carry the strong interaction.

The difference in the number of gauge particles comes from the dimension of the unitary group describing the 
initial n-fermion case, U(1), SU(2) or SU(3), the number of gauge particles being n2 – 1 for the special (SU) 
groups. So we know that the standard model of elementary-particle physics obeys the three symmetries, the 
product of which is expressed mathematically by .  

Hey, isn’t that great! All particle interactions are tied together by the requirements of symmetries (in fact, 
redundancies) under local transformations, which give us the interaction terms between different particles. And 
the very existence of the gauge bosons comes out of the same calculations. How to really comprehend this? 
Here are some attempts.

• Symmetry of a free-particle relativistic Lagrangian under local transformations gives rise to an interaction
term expressed in terms of a gauge field which represents a force-carrying field or particle. Llocal 
transformations are somehow related to forces. But how?

• The requirement of local phase rotation symmetry leads to 

◦ the very existence of the connection, the vector gauge field ,

◦ its transformation law and 

◦ the definition of the covariant derivative.

◦ It also indicates how to construct possible Lagrangians that will be invariant under the local 
symmetry.

• Force-carrying boson fields are the objects which furnish the mathematical transformations necessary to
describe how the effects of local transformations change from one point to another. They are somewhat 
analogous to the exchange rate between countries.

Look out. We are not talking about any old local transformations nor about any particles. The original equations 
are for free fermions and the transformation groups are U(1), SU(2) and SU(3).

6.3. How about mass? The Higgs mechanism
We’re still stuck with the problem that gauge symmetry leaves the W and Z bosons with zero mass.. 

First, several words about potential energy. (Skip this if you already know about it.) These days, physicists don’t 
talk so much about forces, more often about energy. The two notions are equivalent in their results. Indeed, most
of the forces of nature can be derived from potential energies. Imagine a potential energy whose value on a 
graph looks like a U centered around x=0 and with the y axis being the value of the potential energy. 
Thermodynamics tells us that systems like to be in a state of minimum energy, so at the bottom of the U. That’s 
in terms of energy, but we can also see it in terms of forces. The force is the negative of the rate of change (yes, 
the derivative) of the potential. So in the middle of the U, where the potential-energy curve is approximately flat, 
the derivative is zero and there is no force pushing the system away from that point. Go to the right some, 

28 Or have I got things backwards here?
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though, to where the curve is turning up in the U. Now the curve is steeper so it’s negative derivative is pushing 
the system back toward zero. Farther to the right, the curve is steeper, so the force pushing the system back 
toward zero is stronger yet. So now we can talk about potential energy curves, not forces, knowing that our 
system wants to be at the minimum value of the potential-energy curve.

Meanwhile, back with the W and Z bosons, let’s accept the math and assume that these particles did have zero 
mass – just after the Big Bang (in the first 10-12 seconds or so of the Universe) – but then something happened to
spoil this. In the late 1960s, Weinberg, Salam and Glashow came up with the electroweak theory of EM and 
weak interactions. Their assumption is that during those first bits of a second, not only the W and Z particles but 
also the electron had zero mass, and that the EM and weak interactions were therefore symmetric and were 
really the same. In 1964 a trick was proposed, originally thought of by Higgs, Englert and at least four other 
physicists.29 A form of potential energy field was proposed which looks not like a U, but like a sombrero or the 
bottom of a wine bottle30 and has its minimum energy value at a non-zero value of the field. This was done 
simply by adding in an extra term to the potential. You can show this on a graph where the vertical z-axis is the 
energy of the field and the x and y axes (or radius and angle, if you prefer) are the value of the field. Usually, 
zero is zero and gravitational potential energy in classical mechanics, for instance, has its minimum energy at 
zero of the field (taken to be the surface of the Earth). But the Higgs field can have its minimum-energy value out
a way from zero, therefore at a non-zero value of the field, like the circular lowest part of the wine bottle (or hat). 
Saw off all but the bottom couple centimeters of a wine bottle31 and pose a marble on the high spot in the middle,
corresponding to zero of the field. It is obviously not stable, but it is symmetric: Whether the marble looks left or 
right, it sees the same thing – a gradually increasing slope leading down into a valley. The marble will roll down 
into the circular trough a centimeter or two from the center. This is the minimum-energy value and it is not at the 
center of the field represented by the bottom of the bottle (or hat). It is also a non-symmetric state. Looking in 
one directions or its opposite shows a long groove the marble can roll around in. Looking perpendicular to the 
groove, the marble sees an upwardly sloping wall it cannot climb up. This is what we suppose happened as the 
Universe was around  10-12 seconds “old”. At that time, the Universe (the marble) slipped into a particular but 
arbitrary place in the trough and lost its symmetry. Physicists call this process spontaneous symmetry 
breaking.

If we put this non-zero but minimal field value into the equations and fiddle around a lot (moving the coordinate 
system from the center out to the point in the trough, using a covariant derivative to introduce a gauge 
transformation plus a bit more), we wind up with an equation in which W and Z particles and electrons all have 
mass, but not the photon, which is satisfying. We also have a scalar (spin zero) particle with mass and this is the
famous Higgs particle. Since the Higgs filed only confers mass on a particle, not giving it any (vector) 
acceleration, it must be a scalar.

The have W and Z particles and the electron gain mass through their interaction with the Higgs field, as is shown
by the calculation. To repeat: The gain of mass of a particle results from its interaction with the Higgs field. The 
equations show no resulting interaction between the Higgs field and the photon, which therefore remains 
massless, as it is known to be. 

You see why it’s been described as a dense cocktail party, with Joe Doakes (the photon) ignored by everybody, 
but, say, Angelina Joly (the W particle) swamped by the attention and thereby slowed down in her passage 
toward the drinks table. It’s as if she’s taken on mass (sorry, Angelina).

Nutshell: What we have done is to assume an energy field whose minimum is not at zero, which leads the 
Universe to fall into an arbitrary, non-symmetric value for the field, thus breaking the preceding symmetry. The 
result of all this is the existence of a Higgs field and particle, and masses for the particles which interact with the 
Higgs field, such as the W and Z particles, but not the photon. Going in the other direction in time, it also 
explains how the Universe was more symmetric before the symmetry breaking, so that EM and weak 
interactions could be considered components of a single theory of massless particles, electroweak theory. All 
that is evidence for the validity of the Higgs theory.

Calculation thus posits the hypothesis of a combined electroweak force, at least just after the Big Bang. It 

29 I don’t know why only Higgs and Englert were selected for the Nobel Prize. But then nobody accuses the prize committee
of fairness – or courage.

30 Usually called, I know not why, a “Mexican hat” potential. I prefer wine bottles.
31 No, I haven’t done this. Give it a try.
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predicts the existence of the Higgs field and particle. The discovery of a candidate for the Higgs particle was 
announced at CERN on 4 July 2012 and its identity as the Higgs was confirmed within a year.

6.4. Path integral method and Feynman diagrams
Now we have many particles, thanks to second quantization, and interactions due to gauge bosons, thanks to 
gauge invariance. We still need a way to calculate what happens when two particles meet.

The probability of a particle’s going from here to there depends on the particle, on here, on there and on what 
happens in between, i.e., on the path taken from here to there. Feynman’s coup de génie, in 1948, was to realize
that one should sum up the probability amplitudes (probability = square of amplitude) for all possible paths from 
here to there, taking into account what happens along the way, and that many of them give a negligible 
contribution to the total. But there was more. He showed how the contribution from each path could be 
represented by a diagram. The diagrams are now named after him. Here is an example, for and electron-
positron annihilation into two photons.

Feynman diagram for electron-positron (e- - e+) annihilation to two photons  , by bitwise via Wikipedia.32

Calculating the “amplitude” for this (i. e., a wave function before squaring it to get a probability) is not trivial, but 
Feynman broke the problem down into fairly manageable parts. The amplitude is the product of terms: one for 
each incoming or outgoing particle, one for each vertex and one for what happens in between vertices. It’s the in-
between part that is complicated, but that can be calculated by starting from the solutions to the free-particle 
equations for the particles and doing a lot of math. Once the formula is calculated for a particular interaction, the 
formula can be reused over and over again in similar diagrams. It’s almost copy-paste.

As an example, the amplitude for the interaction of the figure includes”

• Terms for each of the incoming (advancing in time) electron e- and positron e+; 

• a term for each of the two vertecies; 

• a term for the red horizontal line, which is an exchanged vector gauge particle, straight out of gauge 
invariance, charged in this case in order to negate the plus and minus charges of the electron and 
positron; 

• a term for each departing gamma ray .’

The problem is that the results tend to be infinite, but even this can be resolved by a horrendously complicated 
subject called renormalization, into which we will very definitely not go!

7. Summing up
In a minimum of words, we have found the following points.

• First, all the summary points of paragraph 6.

• Second quantization permits the creation and annihilation of multiple identical particles.

• Symmetry requires the use of connections based on gauge fields and these are the forces of particle 
interactions. It is also the basis of conservation laws.

• The Higgs mechanism shows how particles acquire mass by interacting with the Higgs particle in 

32 https://commons.wikimedia.org/wiki/File:Feynman_EP_Annihilation.svg
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spontaneous symmetry breaking.

• QFT: It’s all fields.

Except for SR, these are all quantum mechanics or applications thereof.

Of course, the task of putting all this together and doing calculations to predict or explain experimental data is 
Something Else. 

8. Equations of quantum electrodynamics (QED)
You can skip this, but I can’t resist these equations showing how QED comes about from symmetry 
considerations. And if even you don’t understand all the math, looking at them piece by piece will aid in 
understanding what this gauge-field business is all about. If not, you can pat yourself on the back and go get a 
cup of coffee. 

First, let’s admire an equation, the beautiful (yes!) Dirac Lagrangian for a free (non-interacting) spin-½ particle 
like an electron.

. (6)

Here,  is the electron wave function and  is its Hermitian adjoint.33 What that means, for our purposes, is that 
the total (integrated over space)  is equal to one, the probability that the particle is somewhere or anywhere.

What do we see in this equation? The simplest thing is the term with m, and since m is a constant, this gives us

,

the mass of the electron. Actually, we give it the mass, which we have determined by experiment elsewhere.

The other term is more interesting and has two parts. One is that Greek thingie, the . Dirac included this 
because he needed the equation to be consistent with the relativistic energy-momentum relation (the dispersion 
relation, in physics speak)

.

Note that if the electron is sitting still, its momentum p is zero and this equation reduces to Einstein’s famous
. (You may not recognize it because in the other equations, we have set the speed of light, c, and the 

Planck constant, , to 1, a trick to simplify the equations.)

In SR, a Greek subscript or superscript like  indicates a value of 0 to 3, corresponding to time and the three 
perpendicular (orthogonal, in math speak) spatial directions. So there are four quantities , which I present for 
your contemplation and enjoyment.34

, ,

, .

These are therefore 4x4 matrices which multiply the 4-d partial derivative . That’s because of the  super and 
subscripts Why all this? Because electrons have a spin which – remember – exists in its own space, spinor 
space, and these are the operator part handling the spin.

33 The Hermitian adjoint matrix is inverted complex conjugate of the original matrix. Don’t worry about it. 
34 These are in the co-called chiral basis. Don’t worry if that means nothing to you.
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Now for the third part. The derivative term  expresses the rate of change in the system in time (  = 0) and 
space (  = 1,2,3). If the wave function  is transformed by a constant operator, as is the case with a global 
transformation, everything looks the same afterwards in their relative positions. If, however, the transformation is 
not constant, then the change here will be different from what it is over there and this fact must be taken into 
account in calculating the change in . This line of reasoning requires a change in  which will lead us to the 
covariant derivative, , presented in section 6.2. 

Here’s how the math goes. We consider the local U(1) unitary transformation

, 

which is a phase rotation through an angle which varies from point to point in space. Under this transformation, 
the Dirac Lagrangian changes as follows:

, (7)

because of the change due only to the transformation. What we then do is, we write a function which translates 
the field there into the field here. We can use this to write a derivative in which the two terms are coherent and 
we can do the subtraction. But that is only done at the cost of an extra term in the derivative. Adding this term 
makes the Dirac equation invariant under a local U(1) transformation. The derivative with its new term is now the 
covariant derivative,

. (8)

Consistency35 then requires that the  transform as

, (9)

which is the transformation of the Proca (spin = 1) equation. The result is an added term to the Dirac equation,

 , (10)

which is a product of the two types fields, electron and photon, and is just the interaction term we were looking 
for.

Now we must consider the photon with which we want this electron to interact. Since a photon has spin 1 and 
zero mass, we use for it the m=0 Proca equation, 

(11)

which stays the same (is invariant) if the local   transformation if   transforms like (8), which it does! For 
any  this is a representation of the same  group for spin equal to 1. It also is the gauge transformation 
of the standard EM vector potential from classical EM and Maxwell’s equations.

So here is the Lagrangian for QED, quantum electrodynamics: 

.

Including the gauge field to form the covariant derivative

(12)

“simplifies” this to looking pretty much like a sum of the Dirac and Proca equations (6) and (11).

.

So in this sense, equation (12) for the covariant derivative tells us that it is the EM vector field  itself which 

35 I’m not saying consistency with what because the what is the translation function, which I haven’t written. For details, see 
my paper on “Symmetry, groups and quantum field theory”.
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connects one point to the next. At the same time, the field is the photon and gives us the interaction term for the 
electron and photon. All by insisting on covariance under a local U(1) transformation. This is a big deal indeed. 
Remember from second quantization that in fact the photon is an excitation of the field .

We can do similar calculations for two or three fermions under local SU(2) or SU(3) transformations and will find 
the results already mentioned in the bulleted list of section 6.2. In each case, the covariant derivative has added 
to it connections which are the fields of which the force-carrying particles are excitations. This gives us the 
interaction term we need. Poof!

Thoughts and remarks:

• The non-local gauge transformation requires inclusion of the interaction which adds a connection term 
which is none other than the force-carrying field of the interaction.36

• Turning this around, we can say that a force (interaction) is due to a non-local gauge field which 
connects one point to the next. (It must be understood that we mean infinitesimally separated points 
connected by a translation, rotation, boost or unitary transformation.) This would seem to say that the 
non-local field is the force, in the sense that the force-carrying particles are excitations of this field. It is 
related to the transformation through its change under the transformation, equation (9). 

• WHAT THE HELL DOES THIS MEAN? Is it the chicken or the egg, the force or the non-local 
transformation?

If you are not saturated now, consider one more thing. It is the custom to factor out a coupling constant q like we 
have done in (10). Then the Noether current

,

is the electric four-current. The zeroth component of this is the electric charge density, so the total charge is the
integral of this quantity:

,

because of normalization. So by Noether’s theorem, global U(1) symmetry means electric charge is conserved. 
Similar results are found for momentum, energy, spin, isospin and more.

36 Ok, it’s multiplied by some constants, but they don’t change.
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