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I hope that these notes will help you (well, me, at least) to understand how the simultaneous requirements of 
classical and Quantum Mechanics, Special Relativity and symmetry (Lie groups) lead via second quantization 
(and with help from the mathematics of simple harmonic oscillators) to QFT, the physics of multiple particles and 
interactions between them. Two starting points, to show where we are headed:

• “The world is made of quantum fields.”

• QFT is part of quantum mechanics, not something separate.

1. Lie groups
Let’s start with a super-brief overview, to get an idea of where we are going.

1.1.Really short preview
For physicists, a Lie group is a continuous transformation group. Its elements may be transformations such as 
rotations or translations but not reflections, as these are not continuous. Such groups are abstract things, but we 
can study specific examples, called representations. Since the Lie group and therefore the representation are 
continuous, the latter can be generated incrementally from the identity operator by using operators called 
generators. The generators are derivatives of Lie group elements (in a representation) and form a vector space 
called a Lie algebra. The generators are especially interesting to physicists because they represent physical 
observables such as energy or linear or angular momentum. They thus provide links between transformations 
and observables. This allows us to deduce properties of the world around us from properties of mathematical 
groups, which are thus a window onto the world.1

 If you don’t find the coming overview brief enough, you can skip over to section 2.3 on page 12. Otherwise, let’s 
see more details. Take a deep breath...2

1.2.Groups and representations
A group, call it (G,*), is a set, G, of abstract elements, , and some operation, *, on them subject to certain 
conditions:3

• closure: 

• associativity: 

• identity: , denoted 

• inverse: 

The number of elements is the order, or dimension, of the group. It may be infinite.

A Lie group is a group which is also a differentiable manifold, meaning that its elements are organized 
continuously and smoothly (as opposed to elements of discrete groups). For closure, the group operator must 
induce a differentiable map of the manifold onto itself. Every group element A induces a map that takes any 
element B to another element C = A * B, and this map must be differentiable.

1 I think Pythagoras would have loved this!
2 The following presentation of Lie groups is based mostly on Jeevanjee and Robinson. 
3 Math symbols explained in annex 12.
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Being continuous, a Lie group is parametrized by one or more continuous variables, their number being the 
order of the group.

There is some inconsistency in the literature. Many authors do not use the term order, which can lead to 
confusion between the dimension of the vector space of objects acted on and that of the elements of the group. 
The order, or dimension, of the group is in general not the same as the dimension of the vector space. The group 
SO(2) operates on a 2-dimensional vector space but has only one element, the angle of rotation in the plane, so 
is of group order 1. The group of permutations of three objects, a discrete (non-continuous) group, contains six 
elements (the permutations) acting on only three objects.

A representation can be thought of as an instantiation of an abstract group, representing the elements of the Lie 
group (or algebra) as operators on a linear vector space. The objects transformed are then the elements of the 
vector space. More rigorously, a representation is a map between any abstract element g of a group G and a 
linear transformation R(g) of some vector space

in such a way that the group properties are preserved:

• ,

• .

Note that it is the identification of each element of an abstract group manifold with a linear transformation of a 
vector space – an operation in the vector space. The elements of the representation tell how to transform the 
vector space, for instance, to rotate it or give it a boost. In physics especially, it is convenient to represent the 
transformations by a set of matrices. A representation is irreducible when it is a representation of a group G on 
a vector space V which has no invariant subspace besides the zero space {0} and V itself.4 Different 
representations of a specific group may have different dimensions.

In order to study groups of transformations on a vector space V, let’s start simply.

is defined as representing the set of all linear operators on the vector space V. A linear operator is a function T 
from V to V itself which satisfies the linearity condition:5

T(cv + w) = cT(v) + T(w).

Now we will take subsets corresponding to certain conditions and then subsets of those subsets to reach the 
groups of interest in physics.

The most general group will take any point in V to any other point in V. If V has dimension n, then the group 
elements can be represented by  matrices and these must be non-singular, or invertible. Such a group is 
the largest and most general Lie group in n dimensions. This group is defined as the general linear group of a 
vector space V, denoted by 6.

.

Then, according to whether the elements are real or complex, we have the real or complex general linear 
group in n dimensions.7

(real, n-dimensional field)

4 We are leaving out an awful lot here, such as the definition of an invariant subspce.
5 Jeevanjee, 25.
6 Jeevanjee, 118; Robinson, 76.
7 Jeevanjee, 118. The scalar field C has only its transformation properties which are concerned by the group.
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(complex, n-dimensional field)

If the determinant of each element is +1, these groups become the special linear groups

or .

Going further, consider subgroups of these operating on vector spaces possessing a non-degenerate 
Hermitian form , a function which assigns a scalar value to an ordered pair of vectors.8 Examples are the 
inner or scalar product, and the Minkowski metric. The set of isometries , consists of operators T 
which “preserve” , meaning that 

. (1.1)

If the condition

 for all , with (1.2)

holds (it’s positive-definite), then  is called the inner product and the vector space is an inner-product 
space.9 If the inner product is interpreted as a length, then an isometry can be seen as preserving lengths. It is 
also a group. Now things are looking interesting.

From here on, let’s consider only isometries and apply them to three different vector spaces. These are all 
subsets of n-dimensional general linear groups.10 Since the conditions on each reduce the number of degrees of 
freedom and so the number of independent variables, these groups will not have the same order, or group 
dimension, as the dimensions of the vector space where they operate.

1) If V is a real inner-product space, then in an orthonormal basis, an isometric transformation operator T must 
obey

or , (1.3)

which is the orthogonality condition. (Since the T are matrices,  must be the identity matrix.) This is easily 
seen, as a transformation of an inner product takes place as follows.

.

2) If instead V is a complex inner-product space, we find 

or (1.4)

where , the adjoint (or Hermitian conjugate), is the transpose of the complex conjugate of the matrix. Such 
operators are termed unitary and in an orthonormal basis are represented by unitary matrices. Obviously, a 
unitary operator is an isometry of both a real and a complex inner-product space.

3) The vector space V may be a real vector space with a Minkowski metric , 

,

which is a non-degenerate Hermitian form, but not an inner product, since it is not positive-definite. It could have 
any number of negative and positive terms. Of course, we are interested in the 4-dimensional spacetime case 
(1,4). Then its group of isometries must satisfy

,

so that  

8 Or a one-form operating on a vector …?
9 Jeevanjee, 34.
10 I think...
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, (1.5)

where  is the 4-dimensional Lorentz transformation. In fact, this can be taken as a definition of the Lorentz 
transformations. 

• The Lorentz group is then the set of all transformations which preserve the metric of Minkowski space. 

It is denoted by O(1, n-1) in this convention11, so O(1,3) is the 4-dimensional Minkowski spacetime of Special 
Relativity (SR).

S  ummary  :  The matrix representations of isometric (distance-preserving) subgroups of the general linear group 
, acting on the n-dimensional vector space V, are the orthogonal and unitary matrices, and the Lorentz 

transformations – ,  and . In general, the parameter n is not the order, or dimension, of the 
group. We will see that SO(3) has a dimension (order) of 3, but SO(2) of only one.

Both  and  have subgroups characterized as “special”, meaning that they contain only those matrices 
whose determinant is +1.

. (1.6)

They are called the special orthogonal group,  and the special unitary group, .

2. Generators and Lie algebras
The generators of a Lie group make up the Lie algebra of the group.

2.1.Lie algebras
The transformation corresponding to a Lie group is specified by a number (order) of parameters. For instance, 
rotation in 2-dimensional real space, SO(2), is specified by a single parameter, the angle of rotation, and so is of 
order 1. So the number of parameters is not necessarily the dimension of the space acted upon by the group. 
Since it is continuous, a representation of a Lie group can be generated by infinitesimal operations starting from 
the identity element. So taking each parameter  as an infinitesimal increment of parameter , close to the 
identiy,

, (2.1)

where the factor  is included so the infinitesimal generator  in the representation will be Hermitian. Note 
that as soon as we talk about generators, we are referring to a representation of a Lie group, not the abstract 
group. Applying a generator multiple (infinite) times leads to Lie group elements in the representation:

. (2.2)

Here,  is a parameter, and  is an infinitesimal generator of the Lie group and a member of the Lie algebra of 
the Lie group (definition coming).  There is one generator per parameter, so the number of generators (the group 
order) is   constant   for a given group, even though the dimension of a representation and so that of each matrix 

 in the representation may vary. You may soon tire of hearing this repeated, but it is important to distinguish 
between the  dimension of the group (the order) and the dimension of the representation, which may vary. 
Examples of representations of different dimensions of the group SU(2) are shown in Table 1 on p.17.

11 Jeevanjee uses the unusual (to me) convention of O(n-1,1), putting time at the end, for some reason beyond my 
fathoming.
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From equation (2.2), we see that the generator,  is basically the derivative evaluated at :

. (2.3)

From (2.1) and (2.3), one can “see” that a Lie algebra is the tangent space to the group at the identity.12

As an example, consider the case of SO(2), rotations in 2 dimensions, with only a single parameter, the angle:

.

Then

, (2.4)

is the generator, a 2x2 matrix. For the starting vector , 

,

which is a vector pointing in the direction of the change in  under a rotation. It is evident that this works also for 
r at (0,1), (-1,0) or (0,-1) and only slightly less evident for arbitrary angles.

Formally, a Lie algebra13 is a vector space  together with a binary operator, called the Lie bracket, 
. The binary operator satisfies the following conditions:

• Bilinearity:  [aX + bY, Z] = a[X,Z] + b[Y,Z] and [Z, aX + bY] = a[Z,X] + b[Z,Y] , for arbitrary numbers a,b 
and for X,Y,Z .

• Anticommutativity: [X,Y] = -[Y,X]  X,Y .

• The Jacobi identity: [X,[Y,Z]] + [Z,[X,Y]] + [Y,[Z,X]] = 0  X,Y,Z . 

The Lie bracket is not necessarily associative. The Lie bracket [,] tells us how to combine these matrices. A Lie 
algebra is “closed under commutators”14: If X and Y are elements of a Lie algebra, then so is

[X,Y] = XY – YX.

Starting with the Jacobi identity, one can show that the commutator of the generators, , obeys

, (2.5)

where the structure constants  of the Lie algebra are independent of the representation, even though the 
elements   are not.15 This may seem confusing until you recognize that a generator  is really a matrix with 
elements  where subscripts a and b for the matrix elements run from 1 to , the dimension of the 
representation, which is arbitrary; whereas the generator superscripts ,  and  run from 1 to the order 
(dimension) of the group, which is constant and a property of the group. There is therefore a fixed number of 
structure constants for each group. For instance, we will see that the structure constants for SO(3) and SU(2) are 
the Levi-Civita symbols.

• The Lie algebra is the vector space the infinitesimal generators, which are subject to the Lie 

12 Meaning the space of tangents to elements of the group.
13 Schwichtenberg, PS, 45.
14 Schwichtenberg, PS, 155.
15 Maggiore, 15.
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bracket defined by the structure constants. “The Lie algebra is encoded within the commutation 
relations of the generators.”16

The elements of the Lie algebra are operators (matrices), not numbers, and they do not commute. So although 
closure requires

,

we can not do a simple sum of the exponents of the left side of the equation. Instead, we can use power series to 
derive the Baker-Campbell-Hausdorff formula:

. (2.6)

If we think of the parameter space of the group as a vector space, in which each point designates a specific 
element of the group, then the generators specify the space near the identity. Like the 3-d unit vectors  ,  and 

, which are also defined near the identity (zero) but form a set of basis vectors, the   generators form a basis for   
the entire vector space of the parameters. Said the other way around, the parameters specify a point in the 
vector space in terms of the generators. Such a point in the vector space corresponds to a specific element of 
the group, such as a rotation through a certain angle. 

A Casimir element C is built from elements of the Lie algebra in such a way that it commutes with every 
generator X of the group.

. (2.7)

Schur’s lemma then says that it must be a multiple of the identity, so Casimir elements provide linear operators 
with a constant value for each representation. They therefore can be used to label the representation. An 
example is  for rotations. 

Within a Lie algebra, the set of mutually commuting generators, which therefore can be diagonalized 
simultaneously, is called the Cartan subalgebra. The number of such generators is the rank of the subalgebra.

So the number of parameters of a Lie group, its order, is a constant property of the group. It is also the number 
of Lie generators in the Lie algebras of the group. The number of mutually commuting generators (Casimir 
operators) is the rank of the Lie algebra. Although a representation may have an arbitrary dimension, the order 
and rank are constant across all representations (and Lie algebras) of a Lie group. Since the Cartan generators 
are mutually commuting, they share a set of eigenvectors in the vector space. The eigenvectors of the Cartan 
generators span the space and form a basis for the representation. Their eigenvalues, which vary in number 
according to the dimension of the representation, can be used to label the corresponding states within the 
representation, just as the Casimir element provides a label for each representation. Examples will follow.

Among those groups important to physics (more later), SO(n) and SU(n) apply to spaces of n real or complex 
dimensions. This n is not the order of the group, but it does fix (but does not equal) the number of generators. A 
subset of these are Cartan generators. An arbitrary SU(n) group will always have  generators and be of 
rank , whereas an arbitrary SO(n) group will have  generators. In different representations, the 
number of generators remains the same although the dimension of the representation may vary.

For example: Any representation of SU(2) has 3 generators of which one is the Cartan generator, taken to be . 
For a  representation, where  corresponds to the Casimir operator  of value  (not to the dimension 
of the representation, which is ), the generators are  matrices. The eigenvalues of 
the Cartan generator run in integral increments from  to . Although the number of Cartan operators is 

16 Blundell and Lancaster, 84.
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constant across representations, the number of their eigenvectors depends on the dimension of the 
representation.

A special representation, the adjoint representation, may be defined in term of the structure constants by 

. (2.8)

This definition has two important results: 

• The adjoint representation as well as its matrices has the same dimension as the structure constants 
and, therefore, the dimension (number of parameters) of the group, e.g., 8 ( ) for SU(3) or 3 for 
SU(2).

◦ The adjoint representation is the (only) one in which the number of eigenvectors of the Cartan 
generators (the simultaneously diagonalizable generators) is the dimension of the group, This is 
equivalent to saying the number of eigenvectors is the same as the number of generators, which is 
constant and independent of the representation. The dimension of each eigenvector is that of the 
representation.

◦ So in the adjoint representation, the number of generators = the order of the group = the dimension 
of the representation = the number of eigenvectors of the Cartan generators = the number of weight 
vectors (to be defined soon).

• The Jacobi identity then may be used to derive (summed over c)

. (2.9)

The fundamental representation of SO(n) or SU(n) is the one consisting of  matrices.

Now get this. Classical mechanics can be formulated in terms of Poisson brackets

, 

where  and  are observables in a 2n-dimensional phase space P of n generalized coordinates  and the n 
conjugate momenta . The vector space C(P) is the set of all complex-valued, infinitely differentiable functions 
on P. The Poisson bracket is obviously antisymmetric and brute force will show that it obeys the Jacobi identity, 
which means the set of observables constitutes “...one huge Lie algebra.”17 Taking the Poisson bracket as the Lie 
bracket of the Lie algebra, it can be the basis for forming a representation of the Lie algebra in a Hilbert space  
“Thus the set of all observables in quantum mechanics forms a Lie algebra, which is one of our main reasons for 
studying Lie algebras...”18 You can’t ask for more motivation than that!

2.2.Covering groups and subalgebras
A topological space is simply connected if it is path-connected (not disjoint) and every path between any two 
points can be continuously transformed into any other path between those points. This means that the space can 
contain no holes. There is an important fact, which we just have to accept: 

There is only one simply-connected Lie group corresponding to each Lie algebra. 

This “mother” group to potentially many other Lie groups sharing the same Lie algebra is called the covering 
group and is said to cover the other groups.

Put the other way around, a covering group is the unique simply-connected Lie group corresponding to a given 

17 Jeevanjee, 167.
18 Jeevanjee, 167.
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Lie algebra. Any other Lie group which might correspond to this Lie algebra is not simply connected; it is said to 
be covered by the covering group – group to group.

2.3.Summary – The basics of Lie groups
Let’s sum up:

• A Lie group corresponds to a set of continuous transformations which are characterized by a certain 
number of parameters, e.g., rotation angles, which is always the same for the group and its 
representations. This is the order of the group.  The dimension of an SU(n) group is ( ), 8 for 

SU(3) or 3 for SU(2); of an SO(n) group,  .

• From the equation for a generator (2.3), there is one generator per parameter so the number of 
generators is also constant and is equal to the order of the group. However, …

• ...different representations of the same group may have different dimensions.

• Repeat: Although a representation may have arbitrary dimensions, it always has the same number of 
generators.

◦ Caveat: Do NOT confuse the order, or dimension, of a group (constant) and the dimension of a 
representation (variable).

• The subset of the generators which commute and are mutually diagonalizable are the Cartan 
generators. Their number, called the rank of the group, is also a constant for all representations.

• The eigenvectors of the Cartan generators span the space of a representation and therefore are of the 
same dimension as the representation. The eigenvalues can label the corresponding states. Casimir 
operators commute with every generator and are used to label the representations.

◦ SO(3) example: order = number of parameters = ; so three generators =  , , ; 

Cartan generator = , so rank = 1; Casimir operator .

• The adjoint representation is special because it has the same dimension as the group. It can be 
defined in terms of the structure constants, as in (2.9). 

• The fundamental representation of a group SO(n) or SU(n) is the one consisting of  matrices.

• There is only one simply-connected Lie group corresponding to each Lie algebra. It is called the 
covering group and may cover many representations. We will see that SU(2) is the covering group for 
SO(3) as well as for the restricted Lorentz group .  

3. Lie groups for physics
Our general method of study will be 

1) start with an example of a group, e.g., 2x2 matrices and rotation;

2) derive the Lie algebra, i.e., the commutation relations;

3) use the Casimir element and the Cartan subalgebra of the Lie algebra to look at different 
representations and search for a simply-connected group, the covering group. 

In ordinary n-dimensional space, we are interested in transformations which conserve distances (inner products) 
between two points – isometries. So orthogonal (real) and unitary (complex) transformations are important. The 
most interesting Lie groups for physics are  and . In particular, ,  and  apply 
respectively to the EM, weak and the strong forces.
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In addition, SR requires the invariance of the interval (the Minkowski metric)

,

which is a kind of distance between two points. So we add the O(1,3) group to the list of potentially important 
groups for physics. It will turn out to be somewhat more complex than this.

3.1.Orthogonal groups
Since an orthogonal transformation is a linear transformation on a real vector space V that preserves inner 
products, it is therefore the group of isometries on V and is defined, as we have seen in (1.3), by the condition,

(3.1)

and a special orthogonal group by (3.1) and

. (3.2)

The first condition guarantees the conservation of lengths

and the second keeps only rotations (not reflections), a rotation being a continuous linear operator which takes 
orthonormal bases to orthonormal bases.19

Adding to this equation (2.2) for the group element in terms of generators, we see that

.

So we see that the Lie algebra of O(n) is the set of  antisymmetric matrices.

3.2.Unitary groups
A unitary transformation is similar to an orthogonal transformation in that it preserves inner products, but in a 
complex vector space. So, as an isometry, a unitary group’s Hermitian conjugate  must satisfy

. (3.3)

A special unitary group, also satisfies

, (3.4)

Every isometry of a complex inner product space is unitary, and vice versa. In an orthonormal basis, a unitary 
operator is represented by a unitary matrix. It is clear by (3.1) and (3.3) that a unitary operator is an isometry of 
both real and complex inner product spaces.20

For physics, we define the infinitesimal generator  of the Lie algebra as

, 

so that the fundamental equation for isometries 

yields

19 Jeevanjee, 125, 151.
20 Jeevanjee, 120-121.
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and the matrices are Hermitian and so can represent physical observables.

3.3.2-dimensional rotations – SO(2) and U(1)
The unitary group  is just multiplication by a phase  and represents rotation by an angle  in the 
complex plane. Since , it is obviously a group.

Rotations in two dimensions are the unit circle, , and can be represented by 2-d matrices which are elements 
of either or . The fundamental representation (2x2 matrices) of the SO(2) group consists of 
rotations in terms of the sine and cosine of the angle of rotation. which satisfy (3.1) and (3.2).

. (3.5)

However, constant distances in 2-d can also be represented by unit complex numbers in 1-d. This is the U(1) 
group. Such a number is represented by

. (3.6)

One can map (3.6) to a real matrix by using the 2-d identity matrix 

 and (3.7)

to show that

,

which is identical to the equation for 2-d SO(2), showing that there is an isomorphism between the two groups 
U(1) and SO(2), denoted

.

There is a one-to-one, invertible correspondence between their elements. One can interpret them as the same 
group with different labels for the elements.

3.4.3-dimensional rotations – SO(3) and SU(2)
The conditions (3.1) and (3.2) for an orthogonal group are satisfied by 3x3 matrices which are simple extensions 
of equation (3.5), forming the fundamental representation of SO(3). Again there is an isomorphism – with SU(2).

3.4.1.SU(2)
Let’s consider the j=1/2 case by writing a 2x2 matrix as follows, where the parameters are complex numbers,

, (3.8)

with conditions (3.4) requiring

. (3.9)
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Then

, 

and unitarity (3.3) requires , so this and (3.9) can be used to solve for c and d to give

. (3.10)

This now contains two complex numbers and so four real ones. But the requirement that the determinant be +1 
takes away one degree of freedom, so we are left with three free parameters for the SU(2) group.21 This is 
consistent with the fact that an arbitrary SU(n) group will always have  generators.

Let’s look at its Lie algebra. Starting with its expression in terms of generators  

and applying requirements (3.3), now requires that

,

meaning  is Hermitian (the reason for the factor of i in the exponent). Equation (3.4) requires a zero trace.22 So 
the generators of SU(2) must be traceless Hermitian matrices. A possible basis in terms of 2x2 matrices is the 
triplet

, (3.11)

which are the Pauli matrices. These satisfy the commutation relation

, (3.12)

so we can define the generators as  in order to get

(3.13)

which expresses the Lie bracket of SU(2) and shows the structure constants to be the elements of the Levi-
Civita symbol. Looks a lot like the matrix elements of angular momentum, doesn’t it? 

Note well that factor of ½ we have just included in the definition of the generators. It was required by the 
commutators (Lie brackets). It also will pop up in the rotational part of the Lorentz transformation. In both cases 
(really the same), it is responsible for the unexpected behavior of spinors under rotation.

Alternatively, we could start with the  eigenstate and employ the inverse of the ladder operators

and

to derive the matrix elements  in terms of ½ the Pauli matrices (3.11).23 

,      ,      (3.14)

21 Robinson, 88.
22 A corollary to Jacobi’s identity,  , shows that the trace of a determinant 1 matrix must be zero. 

Schwichtenberg, 46.
23 Robinson, 92-93.
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That was for the case of j= ½. For j=1, a set of basis vectors for the generators acting on  may be obtained the 
same way, by starting with the following obvious definition of  and calculating the other matrix elements by 
expressing them in terms of  and :

,  ,  .  (3.15)

3.4.2.SO(3)
Looking for the Lie algebra of SO(3), we know that every element O of the group can be written in terms of a 
generator (a member of the associated Lie algebra) as

. (3.16)

Putting this together with conditions (3.1) and (3.2) gives

and , (3.17)

which can be satisfied by the following generators:24

. (3.18)

These are the generators of the group SO(3) and so elements of , its Lie algebra, the vector space of 3x3 
antisymmetric matrices. They are quite obviously not basis vectors. They can be derived easily from, e.g.,

by using equation (2.3) for the generators in terms of derivatives evaluated at .

We can write them compactly using the Levi-Civita symbol:

, 

which satisfies the Lie brackets

/ (3.19)

Comparison with (3.13) shows the structure constants to be the same as for SU(2). Since SO(3) and SU(2) have 
the same Lie algebra, they can have a common covering. Or one may be the covering group of the other.

3.5.  Irreducible representations of SU(2) – spin
Our goal now is to build representations of this group for different dimensions. We insist again that any such 
representation has the same order, three, in spite of the number of dimensions. The irreducible representations 
are the ones of particular interest. Since SU(2) is equivalent (homomorphic) to , the three-sphere, it is the 
simply-connected group corresponding to this Lie algebra and is therefore its covering group.

One more time, although the representations will have different dimensions, the number of parameters or 
generators is a constant, the order of the group, three in this case (42 -1). We know from  (3.13) and the classical 

24 Schwichtenberg, PS, 44.
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QM study of angular momentum that we can build one Casimir element for this Lie algebra, i.e., which commutes 
with every generator in the group, , and that is

in three dimensions. From the definitions of the  in (3.15), it is easy to show that

,

twice the identity matrix. In two dimensions, from the  and the Pauli matrices (3.11),

.

We see that the representations can be labeled by the Casimir operator values, , i.e., 2 or ¾.

Again, there is one Cartan element, a diagonal operator, which we usually take as , labeling the element by its 
eigenvalue m.

Following standard QM methods, we once again can define two operators

and  

and use the commutation relations (3.13) to show that they are the usual ladder or step (raising and lowering) 
operators used, e.g., for  angular momentum. So we finish with the representations for SU(2) shown in Table 1. 
The representations are labeled by j, the number associated with the Casimir operator, and the different 
elements by m, the eigenvalues of the Cartan operator, 

Dimension j ( ) Cartan eigenvalues, m ( ) n-sphere Casimir eigenvalues

1 0 0 j(j+1) = 0

2 1/2 -1/2 , 1.2 j(j+1) = 3/4

3 1 -1,0,1 j(j+1) = 2

4 3/2 -3/2, -1/2,1/2, 3/2 j(j+1) = 15/4

Table 1. Representations of SU(2).

Note that the representations have different dimensions, but all have the same group order, 3 in this case. So 
SU(2) has representations in different dimensions.

Looking ahead a wee bit, we can say that particles of different spin belong to different representations of a 
rotation group.

3.6.Lorentz transformations
As already noted (1.5), a Lorentz transformation  must conserve the Minkowski metric  and so must satisfy

. (3.20)
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From this alone one can deduce that the determinant of  must be  and also that

,

meaning  is either  or . These two constraints together give four combinations of which only one 
can be generated from the identity element by infinitesimal transformations, as required by a Lie algebra. This is 
the so-called proper orthochronous Lorentz group, also referred to as the restricted Lorentz group, 
represented by the symbol , which has determinant +1 and . The word “proper” here refers to the 
+1 value of the determinant and orthochronous means that the direction of time is not changed. The other three 
sub-categories can be reached by parity and time-reversal transformations of the restricted Lorentz group,

 and  , so the entire Lorentz group may be represented by

.

Consider an infinitesimal vector transformation25

and require conservation of a length in Minkowski spacetime

.

Ignoring square terms in  leads to

,

so the Lorentz group is represented by a 4x4 antisymmetric matrix and therefore has six independent 
parameters. These may be taken as three rotation angles and the three components of the boost velocity .

Rotations are then simply 3-d rotations (3.18) tucked into the Minkowski spatial part:

,

for example, expressed so as to make clear the matrix form,

. (3.21)

We use equation (2.3) to calculate the generator

. (3.22)

We can do the same thing for the boosts, starting with the hyperbolic form for the boost along the x-axis:

25 Following treatment based on Schwichtenberg, PS, 66ff.
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,

and the generators are

, .   (3.23)

A general restricted Lorentz transformation is then of the form

. (3.24)

Brute-force calculation shows that the commutation relations of the six generators are

, , . (3.25)

Note that the third of these commutators says two boosts are equivalent to a rotation. Combine these generators 
linearly by defining two complexified generators

, (3.26)

so that the commutation relations become

,     ,     . (3.27)

Now a revelation:   and  each satisfy the commutation relations (3.19) for the Lie algebra of SU(2). So 
the complexified26 Lie algebra for the restricted Lorentz group consists of two copies   of   , the Lie algebra for 
SU(2), which is therefore the covering group for the restricted Lorentz group. We can label the irreducible 
representations of each of the two SU(2) groups by its Casimir variable j, as in Table 1. Denoting the 
representations by , we have the representations (0,0), (½,0), (0,½) and (½,½), to name only those of 
particular interest in physics.

We have now found that SU(2) is the covering group both for the special orthogonal group SO(3) and for the 
restricted Lorentz group . A very important group indeed!

3.6.1.The Lorentz algebra
Starting with Lorentz generators matrices for the 4-d Minkowski space from (3.23), we can use the metric to 
lower one index, which gives, e.g.,

, etc.

The  are thus a set of antisymmetric imaginary matrices. as are the rotation matrices such as

26 Complexification due to the factor I in equation (3.26).
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.

This also means they are all Hermitian. 

We can adopt a different notation for the same thing by assuming the subscript on  and  as another 
dimension of the matrices and write  as the generator for rotations between the  and  dimensions 
(directions), so that  is a boost in the x direction and  a rotation mixing y and z, i.e., around the x-axis. In 
other words,

and .

Such a general antisymmetric Hermitian matrix can then be written

,

as can be derived by brute force. One can then somewhat more laboriously show that27 

, (3.28)

which is therefore the Lie-algebra bracket for the Lorentz group. It defines the Lorentz algebra.

An otherwise arbitrary set of matrices which satisfies the anticommutation relation

, (3.29)

is said to constitute a Clifford algebra. If we define

, (3.30)

with the  subject to the Clifford algebra condition, then  is obviously antisymmetric. It also satisfies the 
Lorentz-algebra bracket (3.28):28

.

So  is a general form for generators of the Lorentz algebra – provided the  matrices satisfy the Clifford-
algebra anticommutation relation (3.29).

3.6.2.The (0,0) representation
From Table 1, j=0 for a 1-dimensional representation. This means every matrix is just 1 so nothing changes and  
this is the scalar representation.

3.6.3.The (½,0) representation -- spinors
Use the Pauli matrices (3.11) as basis matrices, so 

.

From the definitions of  and  (3.26) with  , one finds

, (3.31)

27 Robinson, 131.
28 Robinson, 138-9.
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so a general transformation is given by

. (3.32)

The factors of ½ show that this is the representation of the double cover of the Lorentz group. Note that these are 
in terms of complex  matrices. These act on two-component objects called – heads up, here! – left-chiral 
spinors: 

. (3.33)

Also, note that equation (3.32) is a matrix equation and the operator is defined by its Taylor series

.

Using the Pauli matrices properties, including 

and ,

the expansion for a boost along the z-axis gives

,

(3.34)

which makes clear the operator is a 2x2 matrix.29 Similar treatment of a rotation leads to almost the usual matrix 
in terms of sine and cosine of the rotation angle:

. (3.35)

For a vector, this is not the angle we expected. But this is not SO(3) and vectors, it is SU(2) and spinors. The 
fundamental representations of SU(2) and SO(3) apply to different mathematical spaces, a 3-d vector space for 
SO(3) and a 2-d spinor space for SU(2).The factor of ½ shows that spinors are not normal vectors in spacetime 
because, after a rotation by 2 , a vector returns to its previous state, whereas a spinor changes by a factor of -1. 
A set of spinors rotated from zero to  corresponds to a set of vectors rotated from zero to . A given rotation 
angle of the vector maps to two different rotation angles of the spinor. For example, a rotation of the spinor by 
either  or  has the same effect as a rotation of the vector by . Mathematically more precisely, the map

,

designates a homomorphism30: “… for every  there correspond exactly two matrices in SU(2) which 
map to R under .”31 It is not an isomorphism because the relation between the two is not invertible. So we see 
that SU(2) is the double cover of SO(3).

Note that this behavior of the spinor is due the factor of ½ which comes from the half-integral value of the spin in 
equation (3.31). This is one case of a general rule which says:

29 Robinson, 123; Schwichtenberg, PS, 73.
30 Jeevanjee, 176.
31 Jeevanjee, 140.
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A particle of spin  is invariant under a rotation by  radians.32 

Section 3.6.5 will present a geometric interpretation of the relation between the two spaces.

A rotation in space must also take into account the half rotation in spinor space. We know this is the j=½ 
representation of SU(2), which behaves like an angular momentum. It is now obvious that this can be 
considered the spin of a spin-½ particle like an electron, whose spin part is in spinor space. It is total 
angular momentum – the sum of spatial and spin – that is conserved. But to show this requires working 
out the effects of the total angular momentum operator and we will not go there.

As already noted at the end of section 3.4.1, SU(2) is the three-sphere, , a 3-dimensional “spherical” 
space embedded in four dimensions, and is the unique covering group for SO(3). SU(2) is said to be the 
double-cover of SO(3), which is seen as half of SU(2). 

We have now used methodology steps 1) through 3), deriving the Lie algebra from an example (twice, in fact) of 
a group and then using that to identify the covering group. Now we can use the Lie algebra to consider other 
representations.

Let’s just note that all these unit-length conserving groups are in fact the same as33 , the n-spheres:

•  corresponds to U(1) and SO(2), 

•  corresponds to SU(2) and so to each half of SO(3), SU(2) being the fundamental or covering group. 

It would be handy to refer to them as such, , but history has decided otherwise.

3.6.4.The (0,½)  representation
By a calculation similar to that of the last section, we can find for this representation that  has the same value, 
but not .

, ,

so a general transformation is given by

. (3.36)

Again, this is a  matrix representation which acts on similar but different two-dimensional objects called 
right-chiral spinors:

. (3.37)

Under rotations, right-chiral spinors transform just like left-chiral spinors by (3.35). But under boosts, they 
transform by

.

Left and right-chiral spinors transform differently by a negative sign of the exponent under boosts along a given 
direction. A parity transformation, or mirroring, in the same direction, reverses the sign in the same way. So a 
right-chiral spinor mirrored along a given direction transforms under a boost along the same direction (and by a 

32 Carroll (2024), 242.
33 “Same as” is too vague. Are they in fact homomorphisms or isomorphisms?
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rotation) like a left-chiral one, and vice versa.34 We will see that this requires both right and left-chiral spinors in a 
valid description of spin-½ particles.  

The generic name for both types of spinors is Weyl spinors.

3.6.5. Geometric picture of spin
A kind of stereographic projection, or map, is a heuristic means of relating a space rotation to a spinor.35

Imagine a sphere of radius 1 centered at the origin and describe any point on the sphere by the usual polar-
coordinate angles,  and , the angles with respect to the z axis and to the x axis in the x-y plane. Map a point 
on the sphere to the x-y plane through the origin (center of the sphere) by drawing a ray from the top of the 
sphere, at x=y=0 and z=1, through the point to be mapped, P, and onto point P’ in the x-y plane. Then consider 
the plane to be the complex plane with x as its real part and y as the imaginary one, so that the projected point is 
given by one complex number. 

Figure 1. Bloch sphere construction of spinor space.

Since the triangle OZP is isosceles, the “radius” from the origin to the projected point P’ is 

,

This maps the point ( , ) on the unit sphere to

.

This may be written as

,

where  can be taken as real and all the complex part is relegated to . Then we may pick

and .

Now let’s interpret these numbers as spinor components, which makes the map of the unit sphere to spinor 
space complete:

34 Schwichtenberg, NNQFT, 88.
35 Robinson, 152ff.
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,

so that

. (3.38)

This indeed can be shown to Lorentz transform like a right-chiral spinor.

Spin “up” then means  and this gives the spinor

,

whereas “down” means , which gives

.

The x and y directions can be calculated also, with the appropriate results. The factor of ½ the angle is made 
clear from the projection. 

The up and down spin directions are perpendicular (orthogonal, i.e., by an angle of ) in spinor 
space but correspond to +z and -z in spacetime, which are  radians apart. 

So we find again that a complete rotation in spacetime corresponds to a rotation of only  radians in spinor 
space. A complete rotation in spinor space corresponds to two in spacetime. This 2-to-1 relation between SO(3) 
and SU(2) is interpreted to mean that SU(2) is the non-trivial double cover of SU(3). The projection also shows 
that spin is a rotation in spinor space (the complex plane), not ordinary spacetime.

The stereographic projection provides a geometric picture of spin and the way a direction in space 
(the sphere), described by SO(3), corresponds to a direction in spinor space (the complex plane),  
described by SU(2). 

Applying a parity transformation to the point on the complex plane,

, ,

leads to the equivalent left-handed spinor

,

which, as expected, transforms like a left-handed spinor.36 

3.6.6. Weyl and Dirac spinors and chirality
Remember that in physics, objects like scalars and vectors are defined by their transformation properties. This is 
also the case for spinors. Spinors are new and rather strange beasts. They seem to live in two spaces at once, 
with one foot (so to speak) in 4-d Minkowski space (since they change under Minkowski rotations and boosts) 
and the other in two-dimensional spinor space (since they have their own transformation rules). More 

36 Robinson, 154-61, milks this Bloch sphere projection for more information, including taking a complex conjugate to go 
from right to left-handed spinors and back. We will see this another way in the next section.
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precisely, they live in a spinor space, one of which is attached to each point of spacetime.37 

Moreover, spinors exist in both left and right-chiral versions. Equations (3.34) and (3.35) show clearly that under 
transformations of Minkowski space, neither left-chiral nor right-chiral spinors transform like 4-vectors. They 
transform the same way under rotations, but differently under boosts.

We need to understand more about the relation between the two.

Robinson says of the rest of this section, that it is “… a topic students typically find very frustrating and tedious.”38 
In my opinion, that’s because it is very frustrating and tedious. 

Let’s change our notation a bit. A left-chiral spinor will be  and a right-chiral, . Since spinors live in their 
own space, spinor space, they have their own spinor metric,

, (3.39)

which is real. Note that the term on the right is the second Pauli matrix, not a squared term. This is not the 
Minkowski metric of spacetime but is used similarly, e.g., to raise or lower indices39

.

This is always possible because  is invariant under Lorentz transformations in the spinor representation.40 Thus, 
a superscripted spinor involves the spinor metric just as a superscripted 4-vector involves the Minkowski metric, 

.

Now define two new spinor quantities:

and . (3.40)

Then use of (3.32) and (3.36) shows that  Lorentz transforms like a right-chiral spinor and  like a left-chiral 
spinor.41 Indeed, we may say they are those spinors, for if42

,

then from this and (3.40),

,

since  is real and 

.

The conversion from   to  is taken to indicate the operation commonly called charge conjugation 
(reversal), 

,

although in fact what it does is transform a left-chiral into a right-chiral.

37 A spinor space may be viewed as a parametrized family of spaces, Sx, each isomorphic to SU(2) and one for each point x 
in Minkowski space B. So, in the lingo of topology, Sx is a fiber “bundled” to Minkowski space B.

38 Robinson, 133.
39 It is customary to use Roman indices for spinors, preferably lower-case (a, b, c...), in order to avoid confusion with I, j, k 

of basis vectors of Euclidean space.
40 Robinson, 135.
41 Robinson, 125.
42 I may have the signs backward, but they cancel out in the end.
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Here’s where it gets messy. Let’s define super- and sub-scripted spinors as follows:43

and . (3.41)

Note well the dot over the subscript or subscript which is intended to indicate right-chiral; no dot, left-chiral. 

Also,

shows that since the metric raises or lowers the index, complex conjugation converts inverts the chirality; it 
exchanges dotted and undotted.  This is consistent with the notation of (3.41).44 So, to take home:

• Complex conjugation interchanges dotted and undotted indices (inverts the chirality).

• The metric  raises and lowers indices. 

• Transforming a left or right-chiral spinor into a right or left-chiral requires both actions. 

The third point is the reason behind the introduction of the two notations, upper/lower and dotted/undotted. 

The spinor metric can be used to construct the inner product

,

which is Lorentz invariant (by (3.34) and (3.35)). In addition, terms like

(3.42)

are then also invariant, but only because one of the spinors is its own complex conjugate.

Let’s look at the spinor Lorentz transformations of (3.32) and (3.36) in all their grisly detail:

,

for left-chiral spinors and

,

for right-chiral spinors. So finally, the spinor Lorentz transformation operators are as follows:

(3.43)

(3.44).

Remember that, because of the  terms, these are matrix equations and applying the operators generally 
requires expressing the exponential function as a power series. And don’t miss the dot on the superscript a on 
the last term of the second equation. 

Under a parity transformation, the generator  is unchanged (angular momentum being a pseudovector), but  
changes sign. This means that, from equation (3.26),

.

One more important point: In order to maintain the validity of equations under a parity transformation, we need to 
have both a left-chiral and a right-chiral spinor. This is rather like in SR, where we are required to to use 4-vectors 
which describe space and time simultaneously. In the spinor case, the solution adopted is to use a Dirac spinor

43 Why bother? That tiny dot is almost invisible!
44 Dixit Schwichtenber, NNQFT, 99-100.
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,

where a parity transformation gives

.

In spite of appearances, a Dirac spinor is a four-component object, composed of two two-component Weyl 
spinors. 

.

Its four components exist in spinor space, not 4-d spacetime, and it transforms like two spinors, not like a 4-
vector, In math speak, it is said to be in the 

product representation. In particular, a boost along the z-axis has the formalism

,

which does not look at all like the Lorentz transformation of a 4-vector in terms of hyperbolic functions.

3.6.7.The (½,½) representation
An object in this representations has two indices, each one transforming under its own 2-dimensional copy of the 
Lie algebra , so the object is 4-dimensional. Using the Pauli matrices plus the identity as basis 2x2 
matrices, such an object can be written as:

. (3.45)

Going through the separate transformations shows that the resulting transforms could equally well be expressed 
by a 4-vector formalism, such as this boost along the z-axis:

.

So the  (½, ½) representation represents vectors and we can use the simpler vector matrix algebra. In fact, a 4-
vector is a rank 2 spinor and so has two Cartan generators and two eigenvalues. Whereas a rank-2 tensor has 
two vector indices, we see now that a rank 2 vector has two spinor indices. In this sense, spinors are more 
fundamental than 4-vectors, since 4-vectors are not appropriate for describing all physical systems on a 
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fundamental level (electrons, for instance).45 Hence the (approximate) expression that a vector is the square root 
of a rank-2 tensor and a spinor is the square root of a vector. As Robinson says: “… the (½, ½) representation ... 
is the fundamental defining vector representation of the Lorentz group in 1+3 spacetime dimensions. ”46

Also, note that the determinant of (3.45) is

,

the invariant spacetime “distance” of SR.

3.7.The Poincaré group
The full spacetime symmetry group of nature is the Poincaré group, also called the Inhomogeneous Lorentz 
group. 

Poincaré group = Lorentz group + translations 

= rotations + boosts + translations.

Infinitesimal translations are represented by the generators

.

The complete Poincaré algebra is then as follows:

 , , , (3.46)

,   ,   , (3.47)

,  ,   I. (3.48)

The first three equations show that  generates rotations of vectors and that  and are such vectors. The 
third line indicates that  and , rotations and translations, commute with the generator of time translations 
(the Hamiltonian) and so are conserved. However boosts, , do not, so are not conserved quantities and are 
therefore not useful for labeling physical states.47 

The Poincaré group has two Casimir operators, the simplest of which is

,

the square of the mass, supposed to be real and positive. The other is

where  is the Pauli-Lubanski four-vector

.

Mathematically, massive and massless particles must be treated differently. To resume, for massive particles, 

 and ,

so their representations are labeled by objects m and j which at this point are just numbers, but will later be 
identified as mass and spin, j = 0, ½, 1, …. Individual states within a representation are labeled by jz = -j, -j+1, … 
j and so have 2j+1 degrees of freedom. 

45 Schwichtenberg, 83.
46 Robinson, 130.
47 Maggiore, 35.
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This method cannot work for massless particles. It can be shown that massless particles only have one degree 
of freedom, parametrized by their helicity, the projection of the angular momentum along their direction of motion.

Note that all this has been shown from consideration of Poincaré invariance; we have not yet written a single 
Lagrangian. Indeed, some authors introduce QFT by considering how Lie groups, Lorentz transformations and 
representations of the Poincaré group predict the existence of of massive particles of spin  with  degrees 
of freedom, and massless particles of definite helicity and only one degree of freedom.48   

4. Finding Lagrangians from symmetry
Standard notation, at least for us, uses  for scalar fields,  for spinor fields and  and  for vector fields.

One of the goals of these studies of groups is to derive proper Lagrangians for the systems of physics. Another is 
to identify behavior of intrinsic properties of particles like spin, isospin or color, and to infer the existence of 
mediator particles, or gauge fields. Although no reason is known for it, aside from the fact that the results give the 
correct equations of motion, two general principles of Lagrangian construction must be observed:49

1. The Lagrangian may only contain the lowest non-trivial derivatives, meaning first or second order. 
Sometimes the second order is necessary in order to maintain Lorentz invariance.

2. For free fields or particles, we must stop at second order in the field.50

The overriding central constraining factor is, of course, that the action must be Lorentz invariant, which will be 
satisfied if the Lagrangian is Lorentz invariant (although this is not a necessary condition), for instance, if it is a 
scalar.

Note that Lagrangians for fields are functions of the components of the field, not of momenta and coordinates of 
particles. More on this in section 5.6.

We must consider several cases. For the moment, we consider only real, classical particles.

4.1.Scalar particles
Scalar fields transform according to the (0,0) representation of the Lorentz group. A Lagrangian (density) obeying 
the above rules would be of this form:

.

Consider the various terms:

• The A term is just a constant and so has no effect on the equations of motion.

• Odd powers of  are forbidden because they are not Lorentz-invariant, so the D term goes out. The F 
term is odd in terms of both the field and the derivative, so out with it.

• The B term can be ignored as it becomes a constant after use of the Euler-Lagrange equations and so 
changes nothing physical.

• After integration by parts, assuming the fields go to zero at infinity, a term like  would be just 
like the F term and so is redundant.

This leaves us with only

. (4.1)

48 Maggiore, 36-40; Weinberg, 62-74.
49 Schwichtenberg, PS, 97-98.
50 Except for the Higgs field (6.55).
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Another approach to Lorentz invariance could start with the SR dispersion relation 

.

This suggests that we do something like take the square of the Schrödinger equation. If we do that and put in the 
QM operator for the momentum, the result looks like (4.1), which gives us an identification for the variables C and 
D. Therefore, we can say the Lagrangian for scalars is

. (4.2)

From this Lagrangian, the Euler-Lagrange equations (5.34) give

, (4.3)

the Klein-Gordon equation.

4.2.Spin ½ particles – fermions
By similar but somewhat more laborious reasoning based on Lorentz invariance of Dirac spinors, we find the 
Lagrangian for the  representation to be of the form 

.

The 4x4  matrices are defined in terms of the identity and the Pauli matrices 

.

This is the Dirac representation. With A = -m and B = I, this gives

(4.4),

the Dirac Lagrangian.51 A more direct and intuitive “derivation” of the Dirac equation will be shown in section 
5.11.

4.3.Spin 1 particles
From the  representation, similar considerations lead to a general invariant form

,

where A is an arbitrary, as yet unidentified vector field. We can ignore the 4th term, as it does not affect the 
equations of motion. Passing all this through the Euler-Lagrange equations gives 

.

Adjusting the constants ( , ) gives the Proca equation:

. (4.5)

For a photon, with spin 1 and mass = 0, this gives

,

which is the inhomogeneous Maxwell equation without electric currents, justifying the choice of constants. This is 
commonly written in terms of the electromagnetic field tensor

51 See Robinson, 167ff, for a much more complete (and laborious) derivation of this Lagrangain.
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(4.6)

which gives

.

The Lagrangian for massless spin 1 is then

. (4.7)

For a massive spin 1 field,

. (4.8)

5. Field theory of free fields
Why fields? It’s all because of QM and SR.52

5.1.Why QFT? Problems with QM and SR
Think about single-particle QM. Squeeze a single particle into a space smaller than its Compton wavelength, 

. By the Uncertainty Principle, its momentum is then , which means that pair production can take 
place ... and we no longer have a single particle. But classical wave mechanics cannot handle such a case of 
particle production or creation. The Schrödinger equation for an electron has no place for the creation of an 
electron-positron pair.

If that were not serious enough, the Schrödinger equation is obviously not Lorentz-invariant since it includes 
spatial derivatives quadratically but time derivatives linearly.

Using the unitary time-evolution operator , it is possible to derive an amplitude for evolution from a state at 
t=0 over a space-like interval, i.e., , and the result is not (quite) the zero it should be!53 This result is 
clearly not acceptable to SR. More simply, you can't measure an event here and now and then measure an event 
light-years away but one second later -- if “one second later” even means anything in this case (which it doesn’t).

In EM theory, we measure fields at a point and consider the propagation of waves through space. The notion of 
fields provides locality to the equations, a means of connecting two points. Needing just this in QM, we suspect 
that we need to use fields similar to those of EM. But since measurable quantities are represented by operators 
in QM, it seems we need operator-valued fields. That is the core assumption of quantum field theory. But first, 
a reminder of a bit of math.

5.2.Some reminders
Here are some reminders of previously studied subjects which we will need.

5.2.1.Action and the Euler-Lagrange equation
The basic variables of classical mechanics are the position and momentum of a particle, plus its non-spatial 
properties such as spin. A free particle is represented by a wave function  which is evaluated at a position 
which is a single point in space, the position presumably occupied by the particle. Its Lagrangian is then

52 The ideas of the next three paragraphs are borrowed from B&L, chapter 8, 75-76; and Zee, 3-4.
53 Lancaster and Blundell, 75-76.
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.

Its momentum is defined by

at the position x. The Action is defined in terms of the Lagrangian

, (5.1)

so the principle of least (or at least extremized) Action says that

.

We then use differentiation by parts to find

.

Choose

and ,

then since , we get

.

We suppose the middle term reduces to zero upone integration, since the end points are considered stationary. 
So for , we must have the Euler -Lagrange equation54

. (5.2)

This is used to write the equation of motion of the particle, information about its dynamics.

5.2.2.Fourier transforms
A function  can be transformed into a form which describes the distribution of frequencies of the original 
function. It is a complex-valued (forward) Fourier transform:

. (5.3)

The inverse transform is:

. (5.4)

The forward transform is an integral of ’ the inverse, of  (using the Minkowski metric signature +---). It 
is easy to deduce the three-dimensional version of this:

.

54 This somewhat over-hasty derivation can be improved on, but it gets across the basic steps.
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In QM, we use these equations to transform back and forth between the the position ( ) and momentum ( ) 
representations. To go to relativistic four dimensions, we write the four-momentum in terms of the temporal and 
spatial frequencies. 

and use =c=1, which gets us the  in the exponent of the two equations: 

. (5.5)

This is the Lorentz-invariant product of the four-vectors

and . (5.6)

So

, (5.7)

means

, (5.8)

which is the SR dispersion  relation 

, 

The SR 4d version then looks a lot like the 1d version except that now it’s over four dimensions. With the (+---) 
metric signature, one-dimensional  goes to four-dimensional , so

(5.9)

and

. (5.10)

Different authors may distribute the factors of  differently.

5.2.3.Harmonic oscillators and ladder operators
A classical harmonic operator, a mass attached to a spring, obeys Hooke’s law:

, (5.11)

of which the solution is

k

where

(5.12)

is the angular frequency of oscillation. Since the potential energy can be expressed by

,

the quantum oscillator has for its Schrödinger equation
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. (5.13)

The Hamiltonian can then be written in terms of the momentum operator .

. (5.14)

Since the momentum and position operators do not commute, we can not factor this simply. But define

and , (5.15)

whose product is

.

The standard canonical commutation relation

, (5.16)

which is the canonical commutation relation leads to

and , (5.17)

so

. (5.18)

The Hamiltonian can be written in terms of these new operators  as

. (5.19)

If

we find that

and , (5.20)

so  can be seen as a raising operator, boosting a state of energy  to . Similarly,  is a lowering operator,

reducing a state of energy  to . So an energy eigenstate  of energy  can be expressed in terms of 
the zero-state energy state  by

,

where  is a normalization constant. In QFT, the operators  and  will be considered creation and 
annihilation operators. due simply to the commutation relations (5.18). All this comes from the commutation 
relation for the operators and the definition of the Hamiltonian in terms of them.  In addition, equation (5.19) tells 
us that  can be interpreted as the energy of  the oscillator in increments of  -- a number operator.

Now we are ready for QFT --- well, almost.

5.2.4.Angular momentum
The classical definition of angular momentum  is

and inserting the QM momentum operator   yields
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and so on, or more succinctly,

.

Recall that we saw in (3.13) that this is the Lie bracket for SU(2). From these commutation relations, we can 
show similarly to the method of harmonic oscillators, that the ladder operators defined by

are ladder operators for eigenvalues of the z-component of angular momentum, . If f is an eigenstate of , 
and the square of the total angular momentum (the Casimir operator)

, 

then for

and 

we find that

.

Now we are ready for spin. Well, almost…

5.3.A wee bit of philosophy
First, two basic assumptions: 

• Without going into ontology, we will assume that there is a reality “out there” to observe, that what we 
perceive with our senses (and instruments) really exists in some meaningful and useful way.

• Understanding it will only be possible if it is governed by universal natural laws55 and so we also shall 
assume their existence. We speak of a law when we have determined that a given previous event 
(called the cause) in certain specific and well-defined conditions always gives rise to the same 
subsequent event (the result) across countless observations. The word “always” here means “every time 
we have observed it”.56 So we consider that this will always be true in the future too. The Sun will indeed 
appear to rise tomorrow morning. 

Now we want to use QFT to study systems of multiple particles. But what is a particle?

The first point should be amended with the provision that we see – obviously – what we see and not what we do 
not. And we only see, or as physicists prefer to say, observe properties of particles, not objects devoid of 
properties. Science philosopher Paul Teller calls this notion primitive thisness, the idea that properties have to 
be properties of something, of some substratum of the particle which is never explained, but which allows us to 
mentally identify separate particles.57 The idea smacks of the notion of essence of ancient philosophers. An 
electron is not a just a point particle, a neutral thingy, it is an assembly of properties -- mass, charge and spin, in 
addition to its position and momentum. Without those properties, there is nothing left we can identify as an 
electron. So rather than assume that point particles exist, we can admit that we only discern particles by their 
properties.

Standard treatment of a two-particle system labels each one, say particle 1 and particle 2, and then identifies 
them by their properties. In fact, Teller points out, they really have two roles, that of bearing properties and that of 

55 This idea is as old as Epicurus or Lucretius.
56 This second assumption comes in fact from Hume, among others, so we’re in good company.
57 Teller, 28.
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supplying identity. Notions of symmetry under swapping of particles also assume we can identify individual 
particles. Teller uses a vocabulary which employs quanta instead of particles. His quanta can not be labeled, 
merely aggregated. Teller counters this labeling by preferring use of the concept of Fock space, which only 
counts the number of quanta in each state, as we shall see later in section 5.5. And quanta do not behave like 
fields, says Teller.

In addition to primitive thisness, Teller is bothered (Who is not?) by the notion of superposition, a well-known 
bogey of QM. Teller claims to “… understand superimposed properties in terms of propensities. If the property 
Q is the superposition of properties P1 and P2, then Q is a property in its own right, but it also includes a 
propensity to yield as a measurement result the superimposed properties P1 or P2, when the right ‘measurement’ 
activating conditions are in place, with the probabilities given by the probability amplitudes”.58 I’m not sure this 
interpretation helps me a lot. 

Teller’s goal is to show that we can avoid the “field” in QFT, that we can describe multi-particle systems without 
any mention of fields, In order to do this, he starts with a multi-particle Fock space. He then assumes the 
existence of a number operator in terms of a creation operator and its Hermitian adjoint with the commutation 
relations of a harmonic oscillator (though he does not mention that). These elements lead to a mathematics of 
multi-particle Fock spaces built by multiple applications of creation operators without mentioning fields. The 
procedure adopted is the inverse of that of second quantization, starting with only Fock space vectors and the 
definition of the number and  lowering operators; all the rest follows. 

The entire Fock space can be built up from the vacuum state by use of the creation operator and results in:

. (5.21)

Interestingly, Srednicki, as well as Lancaster and Blundell, introduces multi-particle QM in the same way.59

5.4. Interlude: a word on Fock spaces
Informally, a Fock space is the sum of a set of Hilbert spaces representing zero particle states, one particle 
states, two particle states, and so on, where all the particles in each state are identical.60 If the identical particles 
are bosons, the n-particle states are vectors in a symmetrized tensor product of n single-particle Hilbert spaces 
H. If the identical particles are fermions, the n-particle states are vectors in an anti-symmetrized tensor product 
of n single-particle Hilbert spaces H. A general state in Fock space is a linear combination of n-particle states, 
one for each n.  In this way, it can represent multi-particle states, a goal of QFT.

Formally, the Fock space is the (Hilbert) direct sum of tensor products of copies of a single-particle Hilbert 
space H. Meaning that it is a sum of states of n particles, each of which is a properly symmetrized tensor product 
of n single-particle Hilbert spaces. The zero-particle state is simply a complex scalar. Then a general state s 
given by

where

•  are complex coefficients,

•  is a state in the single-particle Hilbert space, and

• , are appropriately symmetrized ( ) two-particle Hilbert 

58 Teller, 8.
59 Srednicki, 11; Lancaster & Blundell, 31.
60 Most this section is inspired by Wikipedia, Fock space. https://en.wikipedia.org/wiki/Fock_space
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states, and so on.

This can also be expressed as saying that a Fock space is 

,

where  is the vacuum state,  is the single-particle Hilbert space, and the others are, as before appropriately 
symmetrized multiple Hilbert spaces.

A product state of the Fock space is a state of the form 

which describes a collection of n particles, one in each state . The general state in a Fock space is a linear 
combination of product states. The fact that identical particles in QM are indistinguishable requires that all the 
particles in a given Fock space be identical. 

A useful and convenient basis for a Fock space is the occupation number basis.61 Given a basis 
 of H, we can denote the state with  particles in state , going up to  particles in state 

 and none beyond by defining

, (5.22)

with   being the number of (identical) particles in quantum state i. This state can be constructed from creation 
and annihilation operators as in (5.21). For bosons,  can take on any zero or positive value; for fermions, only 
0 or 1. Note that we only see agglomerations of identical particles with no way of identifying any one of them, 
which satisfies Mr Teller’s dislike of primitive thisness, mentioned in section 5.3.

5.5.The ubiquity of simple harmonic oscillators
Now for a look at where we are going. It all revolves around the way in which simple harmonic oscillators pop up 
in QFT, bringing along their extraordinarily useful math.62 

Let’s start by comparing quantum fields with classical ones. A particle in classical physics is an object at a 
specific location in space-time. In QM, a particle wave function is a function in space of one particle, its 
coordinates and/or momenta. A classical field is an entity which exists everywhere in space-time, even where it 
has zero value. The wave function of a quantum field is like none of these. A quantum field has a wave function 
which is not a function of one point  but of the field configuration in all of space, a function of a function, or 
functional, which we write as

.

The variable of the wave function here is the whole quantum field configuration, , so the wave function is 
the probability amplitude for a complete configuration of a field in all of space. Then   is the probability 
of finding the field in configuration , where  ranges over all space for this configuration. Conceptually,  
measures the probability of simultaneously measuring the value of  throughout space, even though we cannot 
do this in reality. 

A classical scalar field is an object which maps real space ( ) to a real number ( ); the quantum wave 
function of the whole field maps space to a complex number ( ). That the basic variables of the QFT wave 
function be the fields is evident in the definition of the conjugate momentum (density), where the derivative is not 

61 Also called the occupancy number basis.
62 This and the next section are based on Sean Carroll, “The biggest ideas in the universe: fields”, 

http://www.preposterousuniverse.com/blog/2020/05/19/the-biggest-ideas-in-the-universe-9-fields/. Also Carroll (2024), 
chap. 4.
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with respect to the time differential of a position variable but to that of a field.

.

Okay, but how to get particles out of all these fields? Let’s consider the simplest case, non-interacting fields, or 
“free” fields. Just as in one dimension we can use Fourier transforms, as in equation (5.3). to write any function 
as a sum of sine waves, so in 3-d, we can write the spatial field configuration as a sum of plane waves. We call 
these modes, each of which will be specified by a value of , the wave number, and the “height”, or amplitude, 
of the wave. Remember that the transform integrates (or sums) over all values of position, so the modes no 
longer depend on that. In this way, we have passed from a position ( ) representation to a momentum ( ) one.

Now there are three sorts of energy for each mode:

• kinetic energy = ½ (rate of change of field over time)2,,

• gradient energy = ½ (rate of change of field over space)2,

• potential energy = ½ m (field value)2.

These are really energy densities in QFT. 

The new, non-classical term, the gradient energy, as in (5.56), is due to the fact that the argument of the wave 
function, the field, varies over space as well as time. It can be considered a shear term. Of course, kinetic and 
gradient energy can be taken together as a 4-d energy term representing rate of change over spacetime. So the 
4-d Lorentz-invariant Lagrangian density for one mode is WHERE[]5.4/115 a free-scalar [?WHAT?]t  Changing 
the height, h, of the plane waves will change all three energies as the square of h, which is the same behavior as 
that of a simple harmonic oscillator (SHO). The system of a single mode can therefore be thought of as a SHO 
and that is a Good Thing, because we know the solutions to the Schrödinger equation for a SHO. But don’t 
forget, we are considering equations for free particles, which SHOs are not, as they are due to a potential energy 
term.

The wave function of a complex field can be broken down via a Fourier transform into modes corresponding each 
to a single value of momentum ( ), where each mode depends on a single variable, h, and no longer on position 

. We can consider each mode as being fixed by the value of  and being a function of the height, . We 
have thus replaced a complicated problem by a sum of simple ones. These will include the solutions to the 
equations of motion for free particles of spin 0, ½ and 1.

Now we can use all the tricks we learned about raising, lowering and number operators for SHOs in QM (section 
5.2.3), and these lead us to an interpretation. Energy eigenvalues are equally spaced, being given by

, (5.23)

so by analogy, we may consider each level n as corresponding to a wave function  of  identical particles, 
each one of energy . Then  is the wave function for no particles at all, the vacuum, represented by the ket 

 in Hilbert space. 

This is all for free particles, without any interactions. We can consider a slightly more complicated model, 
including some interactions. Spoiler: It’s SHOs all the way down.

Consider a linear chain of N objects, each of mass m, and connected by springs.  The normal position of particle 
j is ja and it can be displaced by a small distance . The Hamiltonian for the system is
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. (5.24)

Since the structure is a sum of oscillators, its overall behavior is likely represented by a sum of waves of varying 
periodicity. So it is reasonable to look at what is called its reciprocal space, i.e., its decomposition in terms of 
frequencies of vibration.63 The quantities which measure the wave distribution are simply the Fourier transforms 
from  and  representations to the  representation. By doing the Fourier transforms and enforcing 
periodic boundary conditions, one can define raising and lowering operators in the reciprocal space and derive a 
Hamiltonian of the same form as equation (5.111) summed over the different modes of the particles.64 

. (5.25)

The real-space coupled, oscillating masses behave in reciprocal space, the  representation, as if they 
were independent harmonic oscillators, – as if uncoupled! These modes of the particles are also called 
phonons. Each such phonon mode can possess energy in an integral number of quanta – just like particles can. 

Now what we have is a number of particles in particular energy quantum states, with  particles in the ith  energy 
state. So we could write the state in the so-called occupation-number representation as 

.

In order to satisfy the goal of representing multi-particle states, QFT uses Fock spaces, a Fock space being an 
extension of Hilbert space to include many-particle states. For the relation between Fock spaces and the 
occupation-number representation, see section 5.4.

The phonon modes are now comparable to a (product) system of N independent oscillators, each one 
possessing  quanta of energy . So we see an analogy between completely different systems, one of 
harmonic oscillators and one of identical particles.65 We will use an identification like this in quantum field theory 
when we consider second quantization. In the case of the EM field, the phonons will be photons, showing how 
a field can exhibit particle characteristics.

Identical particles SHO

Particles in momentum states Quanta in oscillators

mth momentum mode kth oscillator

Using creation and annihilation operators like those of equations (Error: Reference source not found) and (Error: 
Reference source not found) but with subscripts to denote the different particles, one can show that the 
reciprocal coordinate is given by66

63 Reciprocal space, http://goodwin.chem.ox.ac.uk/goodwin/TEACHING_files/l1_handout.pdf.
64 Lancaster and Blundell do it, 25-27.
65 Lancaster and Blundell, 30.
66 Lancaster and Blundell, 27, problem (2.3).
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. (5.26)

This represents a time-independent position operator and is called the mode expansion of the scalar field.67 

Thus, 

QFT can be interpreted as a theory of particles, because the discrete set of solutions to the 
Schrödinger equation68 with correspondingly discrete equally-spaced energies can be thought of as 
states of different numbers of particles, each being an excitation of the field.

When we do this with the EM field, the energy states are called photons.69 Now we can view the SHO ladder 
operators as creation and annihilation operators. We will be seeing this statement again. We will also see how 
the  terms can be considered the non-zero (!) value of the energy of the vacuum. 

We have been considering non-interacting fields, without any interactions between particles. But it is impossible 
to observe particles without using interactions in order to do so. Also, interactions between particles are local in 
space. At , i.e., when the particles are infinitely far apart, any interaction term goes to zero.

Nutshell: “One quantum field can be thought of as a superposition of different numbers of particles.” So we can 
“invent” QFT either by starting with particles or with fields. 

One more time: 

Free-particle fields can be expressed as sums of SHOs, each of momentum . We can therefore 
use all the paraphernalia of diagonal and ladder operators to find eigenvalues of energy, which we 
can then interpret not just as quanta of energy or excitations of the field, but as particles.

Or:

“We describe the Universe by combining fields to form a Lagrangian density . Our canonical 
quantization process often allows us to quantize these fields leading to a Universe pictured as a 
vacuum acted on by field operators . The excitations of the vacuum that the field operators 
produce are particles and antiparticles.”70

Or again:

“Every particle and every wave in the Universe is simply an excitation of a quantum field that is 
defined over all space and time.”71

So much for an introduction to the idea; now on to the nitty-gritty.

5.6.Action and energy in field theory
Quantum Lagrangians may be constructed from symmetry considerations, as we have done in preceding 
paragraphs.. They may also be constructed by analogy with classical ones through the process of quantization, 
such as by replacing momentum, , by the operator .

Leonard Susskind cites four observed principles of physical laws.72

• The action principle, which depends on the Lagrangian, without which there is no conservation of 

67 You do NOT have to remember this.
68 Or the equations of motion derived from the Lagrangian by using the Euler-Lagrange equations.
69 Lancaster and Blundell, 27.
70 Lancaster & Blundell, 154.
71 Ibid, 1.
72 Susskind and Friedman (2017), 256-259.
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energy or momentum or the relationship between them and symmetry.73

• Locality, which means that an event at one place can immediately affect only nearby places. This 
requires continuity of the Lagrangian and fields, which in turn says that the Lagrangian depends on the 
field and its first derivatives with respect to position.

• Lorentz invariance, so that the equations of motion remain the same in every Lorentz-related reference 
frame, as required by SR. The involved 4-vectors may change, but the relations between them remain 
the same; they are then said to be Lorentz covariant. Lorentz invariance of the equations of motion is 
guaranteed if the Lagrangian is a scalar.

• Gauge invariance, such as for the EM field, where there are many equivalent descriptions of a system 
differing by arbitrary functions of position.

Quantization of classical Lagrangians must take these principles into account.

Let’s start by comparing quantum fields with classical ones or non-relativistic ones. 

• A particle in classical physics is an object with coordinates of one point in space. The basic variable is 
x(t), which is a function of time. (How could it be a function of itself?) The Euler-Lagrange equation for a 
particle is

(2.3)

In these equations, the coordinates  are the spatial location of the particle and so represent degrees of 
freedom of the particle. In general, it is moving, so the  are functions of time and  is non-zero. 

• In QM, a particle wave function is a function in space of one particle, its coordinates and/or momenta. 
We can construct its Lagrangian in terms of these variables and use the Euler-Lagrange equation (2.3) 
to solve for its state of motion. The probability that it occupy a specific position in space is given by the 
square of the wave function at that position.

• A classical field is an entity with its own equations of motion (such as Maxwell’s equations) but which 
exists in all space-time, even where it has zero value.74 

The wave function of a quantum field is like none of these. A quantum field has a wave function which is not a 
function of one point  like a classical field, but of the field configuration in all of space, which we write as

.

In short, . The variable of the wave function here is no longer the position x. Instead, that it is replaced 
by the whole quantum field , so the wave function is what is called a functional.. For this reason, the 
canonical momentum is no longer the derivative with respect to , but the canonical momentum density, of 

which the derivative is with respect to  :

. (5.27)

Here we have introduced the notion of momentum density. Locality means a field depends on its value and its 
derivatives in the neighborhood of a point, so we can consider its value at every point and then integrate to get 
the total field. Also, Lorentz invariance demands an equal treatment of space and time variables, which suggests 
a density in time and space for the Lagrangian as well as the Hamiltonian, and so the energy, given by 

73 Susskind and Friedman (2017), 331.
74 Uh...
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italicized letters:

,   ,  . (5.28)

The action is

(5.29)

and

. (5.30)

In QFT, the fields are considered to be variables, so the canonical commutation relation is

, (5.31)

again in terms of the field. The Euler-Lagrange equations for a field, taking into account the spatial variations 
of the field can be calculated from the minimum of the Action in the same way, using differentiation by parts.75 
The Euler-Lagrange equations in Minkowski space then are given by

. (5.32)

Then   is the probability of finding the field in configuration .

A quick comparison of these matters is given in the following table.

Particle Field

Basic variable

Canonical momentum

Wave function , also written 

Euler-Lagrange equation

Canonical commutation relation

Consider the complex version of the Klein-Gordon Lagrangian:

.

The conjugate (canonical) momentum density is then

.

So the Hamiltonian density is

75 Klauber, 18-19.
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, (5.33)

where r indicates fields considered different, in this case  and . The Euler-Lagrange equations lead to two 
equations of motion, one for each field:

,

.

We could also have derived this equation by using the classic dispersion relations

and substituting the standard momentum operator , letting the result act on a field as in (4.2). 
Solutions are Fourier expansions of the position field in terms of momentum fields ( ), the 
sums or integrals of plane-wave equations:

, (5.34a)

. (5.34b)

(Don’t forget, these fields are operators and so should have hats on.)

Now, second quantization requires the canonical commutation relation of the field to be those of (5.31).Imposing 
this on the plane-wave equations shows that similar commutation relations must hold for the coefficients  and 

,  now attired with the appropriate head-wear:

(discrete);

    . (continuous).

These are the same as the commutation relations for the ladder operators of SHOs, which should not be 
surprising given the form of the plane-wave solutions. Plugging the solutions (5.34) into the Hamiltonian density 
(5.33) shows that the free-particle Hamiltonian  becomes

,

where the number operators are

.

A number operator is interpreted as returning the number of particles in the state, i.e., of that energy. And the a’s 
and b’s are creation and destruction operators.

.
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So in order to pass from particle mechanics to field mechanics, we make the following correspondences:

• ,  , so 

•  = Lagrangian and Hamiltonian densities

• The conjugate momentum of the field is given by (Error: Reference source not found).

• The Euler-Lagrange equations, the definition of the Hamiltonian and the action are those of (5.32), (5.30) 
and (5.29).

5.7.EM field Lagrangian and Maxwell’s equations
For the EM field, making the Lagrangian Lorentz invariant is accomplished by constructing it from Lorentz-
invariant quantities, scalars built from the components of the Lorentz-covariant EM field tensor , defined in 
terms of the 4-d vector potential in equation (4.6). The Lagrangian without charges or currents then is usually 
written

. (5.35)

Doing the sums and remembering minus signs from raising or lowering indices,  reduces to76

. (5.36)

The factors of ½ or ¼ are conventions which are without physical importance. Substituting the vector potential 
components from (4.6) leads to the Lagrangian for the EM field

. (5.37)

This is the equation for no charges or current. If such are present, we must add a term so that the Lagrangian 
for the EM field with currents is

, (5.38)

where  

, (5.39)

the charge density-current four-vector. From this Lagrangian, the Euler-Lagrange equations, which in this context 
are

,

may be used to derive Maxwell’s equations starting with the vector potential in the EM field tensor and the 
requirement of gauge invariance, which in turn requires that the current 4-vector obey the continuity equation77

. (5.40)

76 Susskind and Friedman (2017) 339-341.
77 Susskind (2017), 341-346. The factor of 1\4 is a convention, according to Susskind.
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5.8.The Schrödinger and Heisenberg pictures
The classic view of QM is the so-called Schrödinger picture. The time-dependent Schrödinger equation in the 
case where the Hamiltonian is independent of time leads to the unitary time-evolution operator  such that

with

.

In the Heisenberg picture, however, the state is independent of time, so taking the Schrödinger state at zero,

. (5.41)

The expectation value of a Hermitian operator  in terms of the time-evolution operator then can be written as

,

which we can group in two ways78

(5.42)

or

, (5.43)

both being equivalent in result. But the grouping of (5.42) represents a constant operator in acting on wave 
functions changing in time, whereas (5.43) represents a time-dependent operator acting on time-constant wave 
functions. The former, to which we are most used, is called the Schrödinger picture of QM (denoted by a 
superscript S); the latter, the Heisenberg picture (superscript H). The Heisenberg picture is the one most used 
in field theory. This only applies to (passive) time evolution, not (active) translations in space or time.79

To go from the Schrödinger to the Heisenberg picture, 

• replace  by , and

• define the  Heisenberg operator by

. (5.44)

The first of these two steps means

,

so the second step requires

. (5.45)

Differentiate by parts and use  to get

, (5.46)

where H in the commutator means the Hamiltonian. This is the Heisenberg equation of motion. In classical 
mechanics in terms of Poisson brackets, , 

78 Lancaster and Blundell, 74.
79 Lancaster and Blundell, 80.
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, (5.47)

where the last term is usually zero. Comparison of these two equation suggests that part of quantization will be 
the replacement 

. (5.48)

Incidentally, the expectation value for any quantum field – scalar, spinor or vector – is zero, so fields themselves 
are unmeasurable. Fortunately, this is not the case with operators such as energy, momentum or charge.80 But 
measurable quantities have the same expectation value in both pictures.

5.9.Second quantization
There are two methods of introducing QFT, each being useful according to the circumstances. 

• The more historical formulation is canonical quantization, which seeks to quantify a classical theory 
while maintaining its structure, particularly its symmetries. It is based on the correspondence (5.48) 
between classical Poisson brackets and QM commutations. Or on the replacement of the variable 
momentum by an operator. This was discussed in section 5.1.

• The more modern method is the path integral formulation, which is a generalization of the action 
principle of classical mechanics, based on Feynman’s notion of a sum over all possible paths.

One method may be more useful than the other depending on the situation studied. We will consider the path 
integral formulation in section 8.  

In order to pass from classical to quantum mechanics, first quantization quantizes momenta and coordinates by 
promoting them to be operators. It results in non-commutation of the coordinates and their respective conjugate 
momenta.

with (5.49)

The result is the equation for energy (Schrödinger’s equation), in terms of position and momentum as operators, 
and introducing a new object, the wave function. 

.

The main characteristics of the wave function which interest us are:

• It’s a field, having a value at each point in space.

• It’s a probability wave, an amplitude, the modulus-square of which gives the probability that the particle 
be in the corresponding state of motion (Born rule).

• Permitted values of variables are given by eigenfunctions of the wave function operated on by the 
appropriate operator.

• Although this is not always clearly stated, the wave function represents one particle moving in space, 
whose coordinates  are functions of time,  .

Formally, the wave function is related to the state vector in Hilbert space, which is complex and conserves inner 
products. Coordinates and momenta operate on the particle represented by the state vector. We now have 
equations of NRQM. 

80 Klauber, 190. He says there are exceptions “… more advanced areas of QFT.”
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Making NRQM relativistic is done by writing (via informed guesswork) an appropriate Lagrangian which is 
Lorentz-invariant and which reduces to the NRQM value under non-relativistic conditions. Lorentz invariance  
imposes certain behaviors on the Lagrangian, simplifying its confection. This allows us to write Lorentz-invariant 
Lagrangians of particles for various values of spin -- Klein-Gordon, Dirac and Proca, as we saw in section 4. 
Each result is an equation where conjugate positions and momenta are non-commuting operators. From each 
Lagrangian we use the Euler-Lagrange equations to derive the equation of motion for a wave function describing 
a single free particle moving in space, so the coordinates  are functions of time. Now we have NRQM → RQM.

Next, we do almost the same thing we did before, but with an extraordinarily important difference. As we have 
noted, the Schrödinger equation handles the coordinates quadratically but time linearly. Also, since first 
quantization, the coordinates are considered operators, but time is not. The (easier) solution to these difficulties 
is to backtrack and no longer consider the coordinates as operators, but to take the particle as the operator.81 

Second quantization (or field quantization) quantizes the field (wave function), interprted as being a particle. So 
the non-commutation is taken to be that of the field itself and its own canonical momentum, . 

with (5.50)

In words, a quantum field and its associated canonical momentum do not commute, but every other pair of fields 
and momentum densities does. Note that the operator fields are parametrized by the spacetime coordinates, but 
those coordinates variables do not describe the state of a stationary or moving particle, but simply the place in 
space where the field is evaluated. Whereas position coordinates of particles evolve in time, those of fields do 
not. 

But how do these operators operate to produce particles?

The answer is, we can write these fields in terms of other operators, notably, creation, annihilation and counting 
(number) operators. A creation operator converts a state of n particles into one of n+1 particles. In particular, it 
creates a single particle on the vacuum state. 

Multiple creations then lead to any numbers of particles in an energy state or different energy states. We 
describe this using a Fock space. (More later … maybe.)

If this procedure seems somewhat arbitrary, it is worth remembering that neither Newton nor Maxwell nor 
Einstein derived their respective equations from other theories, but rather by letting experimental results and 
general principles inform inspired guesswork (and lots of math).

Summarizing, we recall that the canonical quantization from classical physics to quantum field theory goes 
through two conceptual steps of quantization of the Lagrangian:

1. The first step promotes conjugate pairs of variables, in particular  and , to operators, which is 
equivalent to imposing commutation relations on them. This procedure takes us from classical to 
quantum mechanics by the canonical commutation relation:

. (5.51)

It’s called canonical commutation because it concerns the commutation of canonical (or conjugate) 
variables. Since the operators must operate on something, we must introduce a new notion, the wave 
function (or state vector) with the properties we all know and love, including that it is a field.

2. Then the jump to QFT requires considering the fields themselves not as states but as operators, which 
must themselves obey commutation relations (5.50). Since they are essentially operators for the 

81 Robinson, 143.
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creation, annihilation and counting of particles, they operate on the vacuum ket.

The requirements of SR also must be taken into account and this can be done before or after quantization. In 
other words, “relativize” and “quantize” – in either order.

 We will employ these concepts by following the schema of Lancaster and Blundell. wherein canonical 
quantization is a series of steps for going from a classical field theory to a quantum one. They see the method 
as comprised five steps.82

I. Start by preparing a Lagrangian for a classical relativistic field, considered as complex. This step 
generally involves consideration of symmetries plus some creative guesswork. Write this as a 
Lagrangian density. It is then useful to employ the Euler-Lagrange equation to derive the equations of 
motion and find their solutions, which will be interpreted as fields.

II. Evaluate the momentum and Hamiltonian densities in terms of fields using (Error: Reference source not 
found) and (Error: Reference source not found). Find the energy in terms of number operators. 

III. Quantize the fields by imposing commutation relations (5.50) on them, thus treating the fields as 
operators.  Enforcement of the commutation relations on the fields will the lead to commutation relations 
for the amplitudes.

IV. Work out the fields in terms of creation and annihilation operators based on the amplitudes. These would 
allow creation, annihilation and, so, mutation of particles, the basic steps of particle interactions. 

V. Use normal ordering (section 5.10.7) to avoid infinite energies. 

As an example, consider a massive scalar field (meaning one with mass, not necessarily a very huge one). Note 
that we are using the metric signature

(+, -, -, -).

Would that there were a standard (preferably, this one). There almost is, at least among field theorists. Table 2 
tells it all. The last column is explained later in section 5.11.

82 Adapted from Lancaster and Blundell, 98ff. 
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Author(s) metric signature most-used   matrix basis

Barr et al. +--- both

Blundell & Lancaster +--- chiral

Carroll -+++

Griffiths +--- Dirac

Jeevanjee +++- (!) NA

Klauber +--- Dirac

Maggiore +--- chiral

Peskin & Schroeder +--- chiral

Robinson -+++ chiral

Schwartz +--- chiral

Schwichtenberg +--- chiral

Srednicki -+++

Susskind83 -+++ NA

Zee ? both

Table 2. Comparison of metric signatures and  bases by author.  

Among QFT specialists, (+1,-1,-1,-1) does seem to be the standard (Sorry, Messrs Robinson and Srednicki) – to 
the extent that there is one.

5.10. Relativistic scalar Lagrangian (Klein-Gordon)
We start with the classical version.

5.10.1. Classical relativistic scalar Lagrangian
The standard classical relativistic Lagrangian density for a massive scalar field starts from equation (5.30) with a 
potential energy term as follows:

. (5.52)

This form was initially proposed because it is a scalar composed of Lorentz-invariant four-vectors and it 
represents the SR dispersion relation linking energy, momentum and mass. Its ultimate adoption is due to the 
fact that it works.

Comparing this to the classical Lagrangian for a particle taken as a SHO,

83 Susskind claims (-1,1,1,1) is generally used in GR and he seems to be right. It is also used by Carroll, Schutz and Hartle, 
but not by Lambourne or Collier.
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,

shows clearly that instead of considering the spatial position of our object (particle), we are talking about the 
configuration of a field . SO SHOULD WE NOT be talking about , the complete field over all of 
space (x)?

Since this is the classical relativistic Lagrangian, the field is real. The Euler-Lagrange equations really are easy to 
solve for the equation of motion of this Lagrangian and the result is the Klein-Gordon equation:84

, (5.53)

with

in natural units ( ).85

5.10.2. Complexification
In the above equation,  is a real, classical field, not a wave function. For QFT, we must consider the field as 
being complex, not real. As a result, we must distinguish between the field  and its complex conjugate , so 
the Lagrangian density takes on the slightly more complex form

, (5.54)

where the upper zero indicates spin (which we will see shortly) and the lower, a free particle.

We can calculate the conjugate (canonical) momentum density 

, (5.55)

whose timelike component is just . Then the Hamiltonian density is

, (5.56)

where r indicates a sum over fields considered different, in this case  and . Now we see that the energy has 
three components – kinetic energy of motion in time, what we have called gradient energy in section 5.5 and 
potential energy (the mass term).  Because the two fields   and  are considered separate, the Euler-
Lagrange equation leads to a Klein-Gordon equation for each field:86 From here on,  represents a wave.

(5.57a)

(5.57b).

Care must be taken not to confuse the  for mass and those in the subscripts and superscripts. Two different 
equations means two solutions, each of which can be expressed as a Fourier series of plane waves for the 

84 Klauber, 42.
85 Sometimes referred to as “God units”. Robinson, 143,
86 Klauber, 49.
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discrete case 

(5.58a)

(5.58b)

or as an integral for the continuous case

(5.59a)

. (5.59b)

Note that the second term in each solution is only found in solutions of the equations resulting from the 
Lagrangian (5.54) of relativistic quantum mechanics and not those of the Schrödinger equation.  Because the 
energy operator

,

(with ) solutions of these equations with  in the exponent result in positive 
energies, but those with  , in negative energies. So the distinction here is that the  
terms,  and , correspond to RQM states of positive energy (terms proportional to ) whereas the – 
terms,  and  correspond to states of negative energy. So  can not be the complex conjugate of , 
but a different field altogether.87 In fact, since  changes the sign of the  exponent, . The + or – 
superscripts have nothing to do with whether they operate on particles or antiparticles. This is all exceedingly 
messy, but the message to take home about creation and annihilation operators will be derived soon as (5.65).

5.10.3. Convert fields to operators by imposing commutation relations
This is step III of second quantization.88 Do this by imposing the commutation relations of equations (Error: 
Reference source not found) on the fields and by writing them as operators (with hats on them). Assuming the 
same value for time, this gives field commutators

. (5.60)

Or, in 4-d,

. (5.61)

Starting with the commutation relation for fields (5.60), plug in equations (5.58) with the x system corresponding 
to  and the y system to  and expand. The result shows that the coefficients, the a’s and b’s, are 
themselves operators and must satisfy the commutation relations89 

 (discrete);

  (continuous). (5.62)

87 Klauber, 50.
88 Or second postulate. Klauber, 157.
89 Klauber, 52-53.
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From commutation relations for the fields, we have deduced commutation relations for the amplitudes, or 
coefficients. This depends on the form of the solutions for the fields as sums of modes (Fourier series, or mode 
expansions).

5.10.4. From parameters to wave functions to fields to ...
Let’s pause a moment to consider just what is going on. 

In classical mechanics, we start with either Newton’s laws or a Lagrangian in terms of coordinates and their 
derivatives (or momenta) and we can solve them for the behavior of the system in terms of these spacetime-
dependant variables. Schrödinger quantized classical mechanics by making operators out of these quantities 
and this makes some of them non-commutating. As operators, they then needed something on which to operate, 
so the wave function (or state vector) was born. But what was that? With the Born rule, the absolute square of 
the wave function was seen to represent the probability of the system’s being in a certain state, in which the state 
variables may take on eigenvalues given by the momentum and position operators operating on the state vector.

So now we have a wave function. But with the invention of QFT, second quantization forced the quantization of 
the wave functions of the field by the same trick of turning them into operators and imposing commutation rules 
on them. So what do they operate on? Enter a new state vector. It’s a bit confusing here, because the Dirac bra-
ket convention had already been used in ordinary QM, but it is used again to denote the “thingy” operated on by 
the field operators. These new QFT state vectors will be used to calculate expectation values of observables.

Since the fields are operators and evolve in time – by equations (5.58) or (5.59) – then we are in the Heisenberg 
picture. Discussions of the Dirac and Proca equations will also be in the HP. In fact, it can be shown that the 
Klein-Gordon field equation (5.53) is equivalent to the Heisenberg equation of motion (5.46).90  We will see later, 
in section 7.1, that the time-evolution operator in the IP (interaction picture, a special case of the HP) is governed 
by the free part only of the Hamiltonian (or Lagrangian.

5.10.5. Number operators, Hamiltonian and energy
Once the amplitudes  are known to satisfy the above commutation relations, then we 
can plug the solutions (5.58) into the Hamiltonian density (5.56) and calculate the Hamiltonian

.

The result is the free-particle Hamiltonian

, (5.63)

expressed in terms of number operators.91

. (5.64)

As Klauber says, these two equation “lie at the heart of QFT...”92 Again, (5.63) refers to a free particle of spin 0. 
We shall see very soon that the a terms correspond to particles and the b terms to antiparticles.

In words, in an occupation number representation,  is the number operator whose eigenvalue  is the 

90 Klauber, 79-80.
91 The following notation is from Klauber, 54-55.
92 Klauber, 54.
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number of a particles with 3-momentum  in the state. The two extra factors of ½ in (5.63) are considered to 
represent the zero-point energy (ZPE) or vacuum energy (VE). It has its origin here in the non-commutation of 
the fields and their conjugate momenta from second quantization. Although this is often interpreted as virtual 
particles popping in and out of existence, there is nothing in the equations for the number operators (which 
contain the time dependence in QFT) for any variation in the number, which however should vary constantly if 
virtual particles are ceaselessly created and destroyed. In addition, we have calculated (5.63) for a free field with 
no interactions with anything else, meaning no virtual particles are appearing or disappearing.93 At least, not as 
far as we  know at this point.

The form of equation (5.63) shows that all energies in QFT are positive, even for the b particles, which are 
antiparticles, as we shall soon see.

5.10.6. Creation and annihilation operators
Using the commutation relations (5.62) and the number operators (5.64), one can show, as for a SHO that the 
a’s and b’s are creation and destruction operators as follows:

. (5.65)

This result also is due to second quantization, which has changed non-QFT constant coefficients into operators 
with commutation operators.94 This is clear from

,

where the third step is due to the commutation relation. And since the coefficients are creation and annihilation 
operators, equations (5.58) and (5.59) show that the fields  and  are also operators. This is important, yea, 
astounding: 

Quantum fields are operator fields, operating on states such as the vacuum state.

Note that use of these operators on a state gives a new state. So the operators do not have eigenvalues and do 
not represent observables. Furthermore, since the a’s and b’s are operators, then  and , as defined in 
(5.58) and (5.59) must also be operators. Since these equations are mode expansions of SHO solutions, it 
should come as no surprise that we come upon number operators and ladder operators.

Consider again the solutions of equations (5.58) and (5.59). We will confirm in (5.70) that the a’s are particle 
operators, whereas the b’s are antiparticle operators. From equations (5.65), we see which are creation and 
which annihilation95 operators. So there are four cases.

93 Klauber, 55-56.
94 Even if we have not always put the hat on the a and b operators.
95 Or should we say “terminator” to be more up to date? ;)
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Field operator from equation 
(5.58) and (5.59)

Term96 contains action

 destroys particles

   creates antiparticles

destroys antiparticles97

 creates particles

Table 3. Particle/antiparticle creation/annihilation operators

So we have that

•  is the total lowering operator, since it destroys particles and creates antiparticles; and 

•  is the total raising operator, since it destroys particles and creates antiparticles.

Putting in a minus sign for antiparticles, the total particle-number operator is then

. (5.66)

Now we can see why we need QFT. It can handle particle creation and annihilation and, so, particles’ changing 
into one another. But it can also – importantly – handle multi-particle states. 

5.10.7. Normal ordering
If we use the Hamiltonian of equation (5.63), the terms ½ when integrated over space will lead to an infinite 
energy, which most physicists find quite embarrassing. A way to avoid this problem is to use normal ordering, 
which means rearranging a string of operators so that creation operators are on the left and annihilation 
operators on the right, otherwise in the original order. This procedure supposedly corrects an ambiguity in the 
order of terms in the classical Lagrangian and effectively removes the infinities, which have their origin in the 
non-commutation of certain a’s and b’s.98 But since it pretends momentarily that the creation and annihilation 
operators temporarily commute – which they do not – the procedure is complex. In fact, the non-commutation of 
the operators is fundamental elsewhere in QFT.

While normal ordering is questionable as a means of eliminating infinite vacuum energies, it can be legitimate as 
well as useful if one takes account accurately of the commutation relations for the operators exchanged. This is 
the subject of the use of Wick’s theorem of contractions (section 7.3).

5.10.8. Résumé of two quantizations
After the nitty-gritty, let’s look at an overview of what we have done and found out about quantization.

I. Start with a relativistic Lagrangian density for particles

96 These are Klauber’s notation. Everybody else uses  to mean creation and  annihilation, as will we in future 
paragraphs. This will agree with  and  as creation and  and  as annihilation operators.

97 I admit to not understanding this, the second part. If negative exponent means positive energy, these are particles, not 
antiparticles. However, b seems to prime, saying they are antiparticles...

98 Klauber, 60-61; Lancaster and Blundell, 104-105.
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(5.52)

and make the fields, , complex:

. (5.54)

Derive the canonical momentum of the field

(5.55)

and use it to write the Hamiltonian density 

. (5.56)

Use this or the Euler-Lagrange equations to write the Klein-Gordon equation (wave equation, equivalent to the 
Schrödinger equation)

(5.57a)

(5.57b).

Then solve these for the plane-wave solutions

(5.58a)

(5.58b)

or the continuous solutions of equations (5.59). We have now done first quantization, converting a particle 
equation to a wave equation and so passing from classical to quantum mechanics. We now deal with wave fields.

II. Quantize the fields by imposing the commutation relations

(Error: Reference 
source not found)

on the fields  of the plane-wave solutions (5.58). This requirement leads to commutation relations on the 
amplitudes:

 (discrete);

  (continous). (5.62)

The commutation relations constitute second quantization, showing how waves can give rise to particles.

III. Use these results to evaluate the Hamiltonian from the Hamiltonian density and find the energy states:
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, (5.63)

which look like those of a SHO in terms of a number operator

. (5.64)

IV. Show that the amplitude operators can be used as creation and annihilation operators of particles.

V. Use normal ordering. More on this in section 7.3.

The number operators represent observables and the ’s will be used in propagators and interaction theory.

5.10.9. Klein-Gordon particles are bosons
Looking at equations (5.65) for how creation operators raise the number of particles in a state, we see that, just 
as in the case of raising operators for the NRQM SHO, we can write any state (ignoring b for the moment) as

.

This equation says that multiple particles occupy the same state  and so, according to the Fermi exclusion 
principle, Klein-Gordon particles must be bosons.

5.10.10. Continuity, currents and negative energy
Using the standard QM method of multiplying the Schrödinger equation by the complex conjugate of the wave 
function, subtracting the complex conjugate of that and doing some differentiating by parts, we can derive the 
probability current for the K-G equation in QFT.99

(5.67)

and

(5.68)

so that the continuity equation is then

. (5.69)

Now things get interesting. Insert the K-G solutions (5.58) into the probability density (5.67), then derive the 
effective probability density

,

supposing that the bras and kets are eigenstates of , i.e., energy-momentum. The somewhat surprising and 
interesting result is100

. (5.70)

The minus sign on the second term comes partly from that on the second term of equation (5.67) and partly from 
derivatives of the negative-energy b states. The term looks like negative probability as well as negative energy, 
but if we multiply this by the appropriate charge q, then the second term makes perfect sense as charge density 

99 Klauber, 45-46.
100 Klauber, 69.
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if the b particles are interpreted as antiparticles. This is therefore what is done.

We will say more about negative energies in section 5.11.2.

5.10.11. Comparison to a SHO
Similarities of K-G fields with a SHO are obvious and interesting, but no proof of QFT. Why? Well...101

• Both SHOs and QFT have raising and lowering operators with similar behaviors on states.

However,

• SHOs are examples of bound states with a non-zero potential energy and hence subject to a force, 
whereas the K-G equation applies to free states with no potential or force.

• A SHO is a single particle with different energy states, whereas QFT can handle states of many particles 
in each energy state.

• A SHO represents a real particle oscillating in place with a non-sinusoidal wave function (Hermite 
polynomial), whereas QFT considers complex, sinusoidal waves which move through space.

So although SHOs may help interpreting or justifying QFT, they do not offer a rigorous derivation of it.

5.10.12. The Feynman propagator
Now we can see how the coefficient operators can be used to construct measurable quantities involving the 
creation and destruction of virtual particles. The Feynman propagator (or just propagator) is a mathematical 
representation of a virtual particle or antiparticle (such as a force-carrying boson) created at one point in space 
and time in the vacuum and destroyed at another point. We will use them to propagate a particle from vertex of a 
Feynman diagram to another. So far, we have only studied the Klein-Gordon equation for bosons, so for the 
moment we will stick to considering the propagator for a virtual boson.

Suppose a virtual particle is created at y and destroyed at a later time at x. This is physically indistinguishable 
from a virtual antiparticle of opposite charge going from x to y. In terms of the K-G solutions (5.59), the creation is 
represented by  and is followed by an annihilation given by , the two forming a time-ordered 
operator

, for . (5.71)

The time-ordering operator, , not really an operator, just says to put the earliest term on the right. Now we could 
instead suppose that  creates an antiparticle which is later annihilated by . This antiparticle creation-
annihilation would be represented by

, for .

In the vacuum state, the transition amplitude for the particle process is given by its vacuum expectation value 
(VEV):

, (5.72)

This reduces to a product of scalars representing the creation and destruction probability amplitudes, 
respectively, of the virtual particle. We define the Feynman propagator by102

. (5.73)

101 These criteria are after Klauber, 69-70.
102 Klauber, 73. Not everybody puts in the factor I on the left-hand side or uses the  symbol.
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Using the solution expansions (5.59), this can be expressed in terms of commutators of the separate amplitudes 
of the K-G solutions

for a virtual particle, and 

for an antiparticle. Now plug in the K-G solutions (5.59) and use the results of the commutators to get an integral, 
which can then be converted to a contour integral and then back to the final integral

(5.74)

where  after doing the integral.103 This is the Feynman propagator for spin 0 bosons. It is particularly 
“simple” in the momentum representation:

. (5.75)

So from the K-G equation and second quantization, we can calculate a probability amplitude for the creation of 
virtual particles, a step towards writing the equation for an interaction. Remember, we assume free particles and 
so no interactions.

The good news is that, at least according to Klauber, all this makes up “... most of the basic principles in QFT.”

5.11. Spin-½ particles – the Dirac equation
We saw how to find the Dirac Lagrangian from symmetry considerations, complete with  matrices, in (4.2).

, (5.76)

where the adjoint . We can then use it to derive the Dirac equation.

Alternatively, and perhaps more satisfyingly, the Dirac equation can be derived by starting with the QM dispersion 
relation 

.

We would like to split this up into two parts using something like , but the square root of  does not 
mean anything. The historic discovery of the appropriate equation lends some physical understanding. Dirac 
wanted such a linear equation also to be a solution to the Klein-Gordon equation, and so he considered

,

but then  would define a vector with a specific direction in space which would not be Lorentz invariant. So the 
coefficients could not constitute a simple spacetime constant, but must be operators (matrices) of some sort. So 
he tried

.

In order to compare this with a dispersion relation, one can multiply it by the same quantity with a + sign, the 
result being

,

103 Details of this laborious calculation are in Klauber, 70-77. Yes, over 8 pages.
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which can be rewritten as

.

Exchanging  and  in the second term leads to the anticommutator, so 

.

If the  satisfy the condition for a Clifford algebra (3.30)104, 

, (5.77)

with  being the Minkowski metric, the result is the desired Klein-Gordon equation,

.

The Clifford algebra condition (5.77) tells us that the  must be 4x4 matrices like the metric. The Clifford 
algebra requirement is satisfied if the  matrices obey

,

with the anticommutation relations

..

All this leads to the Dirac equation, the RQM wave equation for spin-½ particles:

. (5.78)

One choice for the Dirac matrices, or gamma matrices, is the chiral representation or basis (or the Weyl 
basis):

, , (5.79)

where the  are our old friends the Pauli spin matrices

.

Since the Pauli matrices are 2x2 in dimension, the gammas are 4x4. In all their glory, 

, ,

, . (5.80)

The notation becomes much simpler if we define

and . (5.81)

104 N.B. The sign of the right-hand side depends on the metric signature. We use (+---). Robinson, for instance, uses the 
opposite. See Table 2.
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(Note the almost-invisible bar over the second quantity, .) Then we can write the chiral basis as

. (5.82)

Alternatively, one can use the mass or standard or Dirac representation or basis105:

, ,

which is the same as the chiral basis except for . 

The important point is:

Physical results are independent of the choice of basis for the gamma vectors.106

5.11.1. Spin, helicity and chirality
It is informative to see how the system works in the chiral basis. We represent the operators as 2x2 matrices, 
knowing this to be a shorthand for 4x4 matrices, so they must operate on four-component vectors. In fact, the 
vectors are Dirac spinors, four-component spinors each composed of a pair of two-component Weyl spinors.

Let’s spell this out completely once:

,

the last two terms being for spinors. The subscripts will be explained below.

Using (5.82) and with , the Dirac equation (5.78) gives

,

or

, (5.83)

where we consider only the spinor part of the solution. Remember that  is a 2x2 matrix and m is supposed 
multiplied by a unit matrix. Let’s make the usual supposition that the momentum is along the z-axis. Then what 
this equation represents in all is:

. (5.84)

For the special case of a massless particle, (5.83) reduces to

105 Griffiths calls it the ‘Bjorken and Drell’ convention. This is the one also used by Klauber. Schwichtenberg uses both this 
and the chiral representation, which is also used by Lancaster and Blundell. Actually these two are handy on different 
occasions.

106 Robinson, 183.
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and . (5.85)

so the equations of the two spinors,  and , are separate and each evolves independently of the other. In 
particular, one will not change into the other. 

Although, we have not yet stated what R and L refer to, each represents a two-component spinor;  occupies 
the top two components of the four-component spinor field, , the two lower. Starting with the Lorentz algebra 
of section 3.6.1 and (3.30) and using the chiral representation and the Clifford algebra, one can derive the 

equations for Lorentz rotations and boosts of the vector .107 The form of the boost for  indicates clearly 

that it is a left-chiral spinor field; similarly,  transforms like a right-chiral spinor. So in the chiral representation 
for massless particles, the two chiralities are well separated. 

Now if we consider massive particles, (5.83) becomes

, and . (5.86)

Now the two states are coupled (by the mass) and may oscillate one into the other. If  and  are eigenstates 
of momentum and energy, we may eliminate one of the spinors, say  to show

, (5.87)

which gives the desired dispersion relation

.

Since we may take either of the square roots of this, we may get positive or negative energy 

.

In the extreme relativistic limit of very high energies, we can ignore the mass. So either in this case or that of a 
massless particle, equation (5.83) reduces via (5.82) to the Weyl equations

and .

These two equations then lead to

and ,

where  is a unit vector in the direction of the particle’s motion, so  is a way of writing the helicity 
operator.108 These say that in the extreme relativistic limit the particle’s spin is aligned along its direction of 
motion. By definition, if the eigenvalue of the helicity operator  is +1. the spinor is considered to be right-
handed (right-chiral); for eigenvalue -1, left-handed.

By convention, the antiparticle solutions of the Dirac equation have negative values of energy. In this case, the 
equations (5.85)  for a massless antiparticle become

and ,

so that

and , for antiparticles.

The signs of the helicity are inverted from those for positive-energy states, 

107 Robinson, 175-177.
108 Robinson, 185-6. 
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Similarly, the chirality operator is defined by

(5.88)

, only in the chiral basis. (5.89)

The matrix  can be shown to be invariant under Lorentz transformations. Its eigenstates are  

and  

with eigenvalues -1 and +1, respectively. The projection operators 

project out the right and left-chiral spinors:

and .

5.11.2. Interlude – negative energies
Let’s be as clear as we can about how we handle seemingly-negative energies. 

Suppose the Klein-Gordon equation has solutions like

.

then our convention is to take this to represent an incoming wave. Applying the momentum operator  
returns  the momentum  (and E>0, by ). So our convention supposes the wave comes in from the left, 
moving in the direction of increasing x. Note that it depends on the metric  signature chosen (+--- in our case). A 
positive exponential term would give , representing a particle moving in the other direction, i.e., either a 
particle outgoing particle moving to the right or an incoming antiparticle, as we will now see.

A charged particle in an EM field obeys the classical equation109

.

If we invert  the equation remains unchanged if we also invert the sign q of the particle. So a charged 
particle traveling backwards in time is equivalent to the oppositely charged particle moving forwards in time.

The probability-current density for a K-G particle is

for a particle with positive energy, where N is a normalization constant. If its energy is negative 

.

So we can handle a negatively-charged particle by making it an antiparticle (i.e., reversing its charge), 
considering its energy to be positive and reversing the sign of its three-momentum.

. (5.90)

109 This paragraph based on Blundell and Lancaster, 62-63. Theirs is the only book I know which explains this so clearly.
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Negative-energy particles are interpreted as positive-energy antiparticles moving in the opposite direction to that 
of the corresponding particle. The K-G equation with a specific energy then has two solutions110:

.

Note that this discussion concerns fields considered to have energy -- positive or negative. In QFT, these “fields” 
will become operators, which don’t have energy. A state is the result of acting on the vacuum with a creation or 
annihilation operator and this will create either a state with positive energy or annihilate the state to nothing. 

5.11.3. Solutions to the Dirac equation
Let’s go ahead and look at the solutions. For now, we will use the chiral, or Weyl, basis. Knowing that solutions of 
the Dirac equation must also be solutions of the Klein-Gordon equation, we start with the general form of these 
from (5.58) in terms of plane waves:

, (5.91)

where the first term represents solutions for positive-frequency (energy) particles and the second, for negative-
frequency, since (reminder: metric signature +---)

.

Then (5.83) becomes two equations, one for positive frequency and one for negative:111

and . (5.92)

In the rest frame, where p=(m,0,0,0), the solutions are

and

where  and  are any two-component spinors, e.g.

, , , . (5.93)

Putting the mass back, let’s make the usual simplification where we take the momentum to be along the z-axis 
and consider only the spinor part of the solution. Remember that  is a 2x2 matrix and m is supposed multiplied 
by a unit matrix. Then the positive-frequency equation (5.92) leads to

. (5.94)

The solutions in the  frame can be found to be112

110 Copied from Blundell and Lancaster, 63.
111 Method of Schwartz, 188-189.
112 Schwartz, 188-189.
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. (5.95)

In a more condensed, almost cryptic, form

and . (5.96)

Don’t miss the bar over the  in the lower part of each one. In the case of p=(E, 0, 0, ),

, ,

, . (5.97)

These are the solutions for the spinor part only. The complete solution includes the spinor and spacetime parts, 
where the spinors of (5.97) are multiplied by the appropriate exponential function as in (5.91).

The inner product of two spinors can be calculated from (5.96):

.

But this is not Lorentz invariant, as E depends on the observer. So instead we define the adjoint function\

. (5.98)

One usually uses a basis  and , so that . Then 

, (5.99)

which is the standard normalization for the spinor inner product of Dirac spinors.113

Now an arbitrary particle solution of the Dirac equation can be represented by a mode expansion composed of 
an integral over momentum and a sum over spin states, including particles (a terms) and antiparticles (b 
terms).114 The subscripts on the coefficient operators indicate the corresponding momentum, . Thus

(5.100a)

and

113 Schwartz, 191.
114 Seems to be mixture of Blundell and Lancaster, 102, 133 and Klauber, 103. [?]
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. (5.100b)

The p subscript indicates momentum. The sum over s takes into account the two dimension of the spinors. When 
we do canonical quantization and consider these fields as operators, then each  and each coefficient should 
get a hat. 

5.11.4. The Dirac equation in QFT
There is no classical Lagrangian or Hamiltonian density for spin-½ particles. Symmetry and compatibility (with 
the scalar case) considerations have led to the equation for the Dirac Lagrangian of (5.76):

.

That this Lagrangian density be valid can be shown by substituting It into Euler-Lagrange equations

   with   (5.101)

The conjugate momenta to  and  are then

, . (5.102)

So the Dirac Hamiltonian density turns out to be115

. (5.103)

Since there are no macroscopic spinor fields, there are no Poisson brackets for them. So the next step of 
quantization must take place by analogy. It turns out that commutation relations like those of (5.76) don’t work for 
spin-½ particles, but the corresponding anti-commutation relations do. So with , the anti-
commutation relations for spin-½ fields are

,

. (5.104)

The same relations hold with the adjoint solution . The hats on the fields indicate that they are 
considered to be operators. Application of these relations to the spinors of (5.100) shows that the coefficients 
must also obey the commutation relationship

and so are creation and annihilation operators, as we found for scalar (Klein-Gordon) particles. 

The Hamiltonian density can be integrated over all of space and three pages of math116 to give the free Dirac 
Hamiltonian

, (5.105)

which is the sum of the energies (considered positive) of the particles and antiparticles.117

115 Klauber, 104.
116 Klauber, 105-108.
117 Ignoring any annoying infinities...
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As for the Klein-Gordon coefficients (Table 3),  and  create a single particle and antiparticle, respectively;  
and   destroy a particle or antiparticle, respectively. Then the  of (5.100) destroys particles and creates 
antiparticles, so it is the total particle-annihilation operator; whereas  creates particles and destroys 
antiparticles and so is the total particle-creation operator.

However, (5.105) shows that particles of both types a and b have positive energies (aside from the vacuum 
energy), unlike the case of RQM where d particles have negative energy. But we are left with the same infinite-
energy problem for the vacuum expectation value (VEV) of the energy we had for the K-G equation.

That is why no more than one spin-½ particle can occupy the same state. It is due to the anti-commutation rules 
for such states. Adding a particle to a state which already has one would be118

. 

But since

, (5.106)

trying to create a second particle in the same state as the first destroys the state. This is the Pauli exclusion 
principle. It says that fermions make up the stuff around us. And it comes from the anticommutation relations for 
spinors.

5.11.5. Feynman propagator 
Similarly to what was done with bosons, we can (rather laboriously) calculate the Feynman propagator for spin-½ 
particles:

, (5.107)

which in the 4-momentum form is

. (5.108)

5.12. Spin-1 particles – photons
Using the same methods as for spin-0 and spin-½, we can find the relevant equations for photons.  We start 
directly with relativistic EM because there is no non-relativistic version, EM being already Lorentz-invariant and 
so the precursor of and inspiration for SR. 

From (5.37), the charge-free Lagrangian for the EM field is

. (5.109)

The simplest possible QFT Lagrangian density, as proposed by Fermi119,  is patterned after the classical, 
relativistic Lagrangian.

. (5.110)

Putting the Euler-Lagrange equations to work on this leads to

118 Look out, Klauber, 110, uses c and d for fermion operators. 
119 “There is actually more than one possible Lagrangian density which leads to the correct classical theory of 

electromagnetism. The simplest of these, first proposed by Fermi, …” is the one in (5.110). Klauber, 144.
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, (5.111)

which is the covariant form of Maxwell’s equations in the Lorenz gauge. If  is real (it is), it has plane-wave 
discrete solutions120

(5.112)

and continuous ones121

(5.113)

There is no second set of solutions in , as for the K-G equation, because the  are real, since they are 
the basis of the observables  and , the electric and magnetic fields. This is basically because they are their 
own antiparticles.122 In these equations, both  and  take on integral values from 0 to 3. The solution  is a 
vector (a 4-vector), so photons are referred to as vector bosons. 

The  are the components of polarization vectors . Being 4-vectors, each  has 4 components , 
labeled by the superscript . They are generally taken to be orthogonal, Let’s adopt a coordinate system, 
somewhat simply called the photon aligned coordinate system123, in which the 3-vector  components lie 
along the x, y and z axes, with the 3rd component along the z axis which we also take to be the direction of . 
Since  is real, we consider only the r=1  polarization, so the result of equation (5.112) is124

 

where  so  is a cosine wave in the x-z plane, an example of linear polarization. The magnetic field 
 is then perpendicular to it in the y-z plane.125

Care must be taken in order to avoid confusing spin and polarization. QFT for photons is formulated in terms of 
polarization; for fermions, of spin. Nevertheless, it is as if each type of particle has what might be called a 
"pseudo-angular momentum" or spin factor which multiplies its state vector components.. For scalars (K-G) this 
is of dimension 0, for spinors 1/2 and for photons 1, corresponding to a sort of "spin" in all three cases.

As pointed out in section 5.11.1, SR requires that the spin of a photon, because it Is massless, be aligned along 

120 Klauber, 147.
121 Blundell and Lancaster, 122.
122 Klauber, 141-2, 148.
123 Klauber points out it should be called the “photon-polarization vector-axes aligned” system.
124 Klauber, 143.
125 For a complete discussion, with diagrams, see Klauber,142-143.
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its direction of motion, either forwards or backwards, and so lies along  or . Polarization vectors, however, 
have four possible mutually orthogonal states in 4-d Minkowski space.

The equations (5.112) and (5.113) resemble those for the K-G equation, except that:

• photons have no mass (  in K-G equation);

• the electric and magnetic fields derived from the 4-vector potential  are real and therefore  is too;

•  is a 4-vector.

In fact, in QM photons are their own anti-particles and this is the meaning of the reality of . 

Second quantization leads unsurprisingly to commutation relations for the coefficients of the photon126

 with   (discrete) (5.114)

(continuous) (5.115)

where underlined subscripts are not summed. The factor  comes from the fact that

,

the Minkowski metric, which arises naturally from EM’s already being Lorentz-invariant. 

The analogy with the other two particle types does not stop here. Lo, behold, the Hamiltonian is

, (5.116)

where the number operator is

, (5.117)

As expected

•  creates a photon with momentum  and polarization r, and
•  destroys a photon with momentum  and polarization r.

And so forth. Last but not least, the photon propagator is expressed as follows:

, (5.118)

in physical space, and

, (5.119)

in momentum space.

126 Klauber, 148.
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6. Symmetries and the Standard Model
Now that we’ve studied the equations and their solutions for free scalars, spinors and vector particles, let’s get 
back to symmetries and their effects. The reason for all this is to understand particle physics. That is expressed 
nowadays by what is called the Standard Model, which in turn is part of the Core Theory. it’s called a “model” 
because there are lots of parameters necessary for using it, but these are not supplied by the model. The SM is 
expressed by QFT which depends on QM. OK?

6.1.The standard model (SM)
Particles are either fermions or bosons, according to the type of statistics they obey. (“Type” and “family” are not 
official terms of the SM.)

Bosons have spin which takes on only integral values – for instance, 0 or 1. They obey Bose-Einstein statistics.

Fermions all have half-integral values of spin – ½, 3/2 and so on. They obey Fermi-Dirac statistics. Most 
importantly, they are the basic components of matter, the blocks from which  all of us are built. This is due to their 
being constrained by the Exclusion Principle not to occupy the same state, as we saw by 5.106. 

Figure 2: Elements of the standard model127

There are two types of basic fermions – quarks and leptons. They all are shown in Figure 2, the particle zoo, 
which is composed of six quarks (shown in purple), six leptons (green) and four gauge bosons (orange). Table 4 
displays some of their properties more visibly.

127 Wikipedia Creative Commons, 
https://en.wikipedia.org/?title=Standard_Model#/media/File:Standard_Model_of_Elementary_Particles.svg.
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Family Type Generation Spin ( ) Particles (charge or quarks)

fermions leptons 1 ½  (-1),  (0) 

2  (-1), (0) 

3  (-1),  (0) 

quarks 1 ½  ( ),  ( )

2  ( ),  ( )

3  ( ),  ( )

composite ½ p ( ), n ( ) 

 ( ),  ( )

bosons Higgs 0 Higgs

gauge bosons 1  (photon), , ,  (gluons)

2 graviton

composite (mesons) 0  ( )

0  ( )

1  ( )

1  ( )

Table 4. Particles of the Standard Model

Physics recognizes four forces, three of which are considered by the Standard Model.

The strong force is mediated by quarks, so hadrons, particles composed of quarks, are subject to it. Hadrons 
are divided into mesons  (“middle weight”) and baryons (“heavy”, meaning mass  the proton mass). The 
difference between mesons and baryons is not just an imprecise question of mass, but of the number and type 
of quarks in them. Mesons are composed of two quarks, one quark and the corresponding antiquark; baryons, of 
three quarks. 

Fermions are particles of half-integer spin and include the hadrons, but also the “lighter” leptons. Leptons are 
not composed of quarks and so do not interact via the strong force, although the charged ones are subject to the 
EM force.

Quarks are distinguished by their flavor128 – up, down, charm, strange, top or bottom – which obviously are 
arbitrary terms and have nothing to do with taste or appearance. They are arranged in three columns called 
generations. Quarks have charges +2/3 or -1/3; leptons, 0 or . Each of the six flavors of quark exists in three 
versions indicated (by analogy) by the colors red, green and blue129, for a total of 18 combinations. When forming 
matter particles, the quarks must group together in such a way that the result is “colorless”, so they occur in the 
combination R+G+B for baryons like the neutron or proton, and C+C, where the bar above the character 

128 So called by Murray Gell-Mann, the same guy who found the word “quark” while reading Finnegans Wake. Uh-huh...
129 Not the same as the colors on the chart.
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indicates an antiparticle, for bosons. Color is important because it allows the existence within a nucleon of three 
quarks which would otherwise be in the same state and so would be forbidden by the Exclusion Principle. 
Antiquarks have anticolors. 

The mass of, for instance, a proton (about 938 MeV/c2,, about 1.67 x 10-24 grams) is far greater than the sum of 
the masses of its constituent quarks (3x2.3 MeV/c2  7 MeV/c2) . The difference, almost 99% of the proton’s 
mass, is potential energy of the strong force which binds the quarks together into the proton. Splitting the proton 
into quarks requires this amount of energy, which explains why physicists need such powerful particle 
accelerators.

Matter is made up of atoms with nuclei containing protons and neutrons (together called nucleons), with 
electrons forming a negatively-charged cloud around the nucleus. Such long-lived particles are made up of 
quarks of the first generation. A proton is composed of two up quarks and a down quark. The former have a 
charge of +2/3, the latter of -1/3, so the total is +1. A neutron is composed of an up and two downs, for a total 
charge of +2/3-1/3-1/3 = 0. And so on. 

Obviously, there is some overlap in these categories, as is sketched in the following figure. Although fermions 
and bosons are distinct, hadrons may be either fermions or bosons, which means that some fermions and some 
bosons are composed of quarks, those bosons which are not are force-carrying particles. But the particles which 
constitute matter are always fermions.

Figure 3. Bosons, hadrons and fermions, from Hugo Spinelli via Wikimedia Commons130.

To summarize, modern physics recognizes four fundamental forces, or interactions, in nature.

1. Gravity is theorized to be conveyed by a yet-to-be observed particle called the graviton (not shown in 
the figure because never observed and because gravity is not part of the standard model). It is a weak 
force (the weakest) but works across enormous, interstellar distances and is responsible for no less than 
the formation of stars, galaxies and planets. Gravity is due to the curvature of space, so there is debate 
whether it is a force at all. In fact, we should speak not of four fundamental forces, but of four 
fundamental interactions.131

2. The electromagnetic force between charges or magnets is conveyed by the photon, which is the particle 
of light. Like gravity, it has infinite range, but is stronger. Since its sources can be either positive or 
negative charges, the two cancel each other out, making the effective force at large distances weaker 
than gravity. The quantum theory of the electromagnetic force is quantum electrodynamics, or QED. 
We will confront the basic equation for QED in (6.24).

3. The strong force is the strongest, but is very short-ranged. It holds quarks together in the nucleus in spite 
of the repulsive electric forces between proton charges. It is conveyed by the appropriately-named 
gluon. The quantum theory of strong interactions is called quantum chromodynamics, or QCD, with 
which we will deal in Section 6.9.

4. The weak force is weaker than the strong or EM forces, but is still stronger than gravity. It is conveyed by 
the W and Z bosons. It is a very short-range force. responsible for decays of various radioactive 

130 Boson-Hadrons-Fermions, https://commons.wikimedia.org/wiki/File:Bosons-Hadrons-Fermions-RGB.svg.
131 Hossenfelder, “The fifth force.” https://backreaction.blogspot.com/2021/07/whats-fifth-force.html
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particles. Such decay is largely responsible for the existence of the Periodic Table and so for the 
elements of which our Earth and we are made. Since it enables the transmutation of a proton into a 
neutron and leads thence to the formation of deuterium, it is essential for the “burning” which takes place 
in the Sun! We will study this force in Sections 6.10 and 6.11. 

Weak interactions are more complex than the others. They are the only ones which exhibit parity violation. This 
occurs because the weak force is asymmetric for left-handed and right-handed particles. There are two kinds of 
weak interactions: charged interactions, mediated by  bosons, and neutral ones, mediated by  bosons. 
Only the charged weak interactions can change flavor.132 For some reason, neutrinos are always left-handed; 
anti-neutrinos, right-handed.133

So there two infinite-range forces, gravity and EM, and two short-range ones, the strong and weak. By order of 
strength, from strongest to weakest, they are strong, EM, weak and gravity.

6.2.The Core Theory
It is important to understand that quantum mechanics alone does not explain the world. It is a framework for 
expressing theories about the world and for doing calculations. It can, for instance, be used to explain atoms and 
the periodic table, but only by adding information, e.g., that a hydrogen atom is composed of a proton with one 
electron moving about near it under the sway of the electromagnetic force. 

Modern physics considers everything to be made up of fields. This is the idea behind quantum field theory 
(QFT). Fields are where the buck stops. Like the bottom turtle, they are not made up of anything else (well, as far 
as we know). The particles which we see as the constituents of all the stuff around us are vibrations in quantum 
fields, fermion fields for matter, boson fields for forces. If you have trouble imaging a proton field interacting with 
an electron field through a vector boson field, you are not alone. It’s much easier to imagine them as particles. Is 
that because our brains are built to comprehend particles better than fields? Who knows? Maybe we can glean a 
clue to understanding by remembering that Lie groups are abstract thingies which only apply to what we perceive 
as nature through the construction of representations. Abstract maps to real.

Although the separation of GR and QM keeps us from understanding completely the realm of the infinitely big or 
the vanishingly tiny, the Big Bang or black holes, most of the time who cares? The stuff around us in our 
everyday world is just ordinary matter and not composed of black holes, so we can effectively describe the world 
we live in with the standard model, based on QFT and the four forces, plus GR. This is what some physicists call 
the Core theory.

Core Theory = QFT + GR

And It works, providing the physical laws underlying chemistry, biology, astrophysics, engineering and much of 
cosmology (i.e., except for the Big Bang and black holes).

6.3.Noether’s theorem and currents
Consider a Lagrangian density  whose field variables  undergo infinitesimal global 
transformations  which are functions of a parameter . Use of the Euler-Lagrange equations and 
differentiation by parts shows that

, .

If this field does satisfy the equations of motion, then by the Euler-Lagrange equations. the two-term expression 

132 Griffiths (2008), 74.
133 Griffiths (2008), 138.
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in parentheses is zero by the Euler-Lagrange equations. Then

, (6.1)

Since it is the action, the integral of the Lagrangian, which is extremized, we can add to the Lagrangian a surface 
term, a divergence of some function , which will disappear when integrated over a surface sufficiently far away 
that fields are all zero. Then the quantity in question is the Noether current defined by

. (6.2)

Equation (6.1) shows that the current has zero four-divergence , which means

.

Integrated over all of space, so the divergence term disappears, this means the zeroth component, , is 
conserved in time.134 One can see this as a charge,

, (6.3)

which is constant in time. i.e., it is conserved. This is Noether’s theorem.

Note that in case of several fields , the RHS of equation (6.2) is to be summed over the fields.135

Applying this with various transformations leads to beloved conservation laws, as summarized in Table 5.

Transformation Current Conserved quantity 

Spatial translation  Momentum p

Spatial rotation  Angular momentum 

Time translation  Energy  (Hamiltonian)

Boost  , so Uh...

Table 5. Conserved quantities of spacetime transformations

The last boost current in the table depends on t, which can be picked so that the current is zero, which is 
therefore conserved. Uh... okay.136

Let’s pause to note that in the case of conserved momentum, for instance, a measurement of momentum is 
based on the generator of translations and so involves a translation, thus changing the value of the position. This 
realization offers a qualitative way to understand the Uncertainty Principle stating, in this case, that momentum 

134 Klauber, 173-4; Lancaster and Blundell, 94.
135 Klauber, 173-4, 296. Klauber claims that the derivation of this current does not depend on whether  is a constant, so 

Noether’s theorem is equally valid for global and local transformations. But I’m not convinced.
136 Schwichtenberg, 105.
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and position cannot be simultaneously measured precisely.

Spacetime transformations of fields like rotations or translations are messier because changes come from the 
fields themselves as well as from the transformed coordinates. The results, though, are consistent with the 
contents of Table 5. In particular, spacetime translations

 

lead to field transformations137

and, since it is a scalar, the Lagrangian must transform in similar fashion:

.

Putting this together with equation (6.2) leads to a tensor current 

, (6.4)

The time-like “charge” which is conserved is

is the space integral of the Hamiltonian density, which is the total energy – which is conserved. The spatial 
“charge” is

which is therefore interpreted as the (physical) momentum of the field, not the canonical momentum, in the i 
direction, which is also conserved. The current (6.4) is therefore the energy-momentum tensor.138 The final 
result is in the conservation of energy and each of the three components of momentum. 

We can expand a transformation  as  so that an infinitesimal transformation 
is given by

and . Then the Noether current is, from (6.2),

, (6.5)

where we ignore the arbitrary  term.

We will find the same result for the QED interaction Lagrangian in (6.27). 

Table 6 summarizes similar results for fields if equation (6.2) is used to calculate the Noether current due to a 
U(1) transformation on our three favorite fields.

137 Peskin & Schroeder, 18-19.
138 Schwichtenber, PS, 110; Blundell and Lancaster, 94-95; Peskin and Schroder, 18-19.
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Type of field Current Conserved quantity

Free scalar (Klein-Gordon) Charge

Free spinor (Dirac) Charge

Free photon (Proca, m=0) Charge = 0

Full QED Lagrangian (6.24) Charge

Table 6. Conserved quantities of Noether currents for internal symmetries

The results found here using Noether’s theorem are the same as those found by the standard QM method 
starting with the Schrödinger equation. The result for the QED interaction equation is as expected, since photons 
are chargeless. 

Equation (6.2), when applied to changes only in the fields, not the coordinates, represents internal symmetries of 
the system.139 In particular, for a translation of the field,

,

not of spacetime, it shows conservation of a new quantity, the conjugate momentum density,

. (6.6)

This must be distinguished from the physical momentum density of the field, which is due to invariance under 
spatial translations.

6.4. Isospin
It was originally proposed that the strong interaction was symmetric under the exchange of a proton and a 
neutron. The concept has since been revised to handle the exchange of an up and a down quark. The idea is of 
a new symmetry like spin and so called isospin.140 Like spin, isospin may be expressed in representations of 
SU(2) of different dimensions, as shown in Table 1. The mathematical apparatus is the same as that of angular 
momentum.

Since the symmetry group is SU(2), the transformations behave like rotations from one particle identity into 
another. The symmetry implies the existence of a Noether current and a conserved Noether charge, the isospin. 
To the extent that the u and d quarks have approximately the same mass and identical strong coupling to the 
gluon, isospin is conserved.141 Although the isospin behaves like angular momentum, it is, like spin, in its own 
internal space and has nothing to do with these other angular-momentum-like properties. Assuming, as usual, a 
rotation about the 3-axis, we then can talk about a set of n particles with isospin  and 

 in integral steps.

Some examples are shown in Table 7.

139 Klauber, 173.
140 The term isospin comes from isotopic spin. Nuclear physicists call it isobaric spin. Griffiths, 129.
141 Barr et al., 119.
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particles Isospin 

p, n or (K0 , K+ ) ½ n or  = -½, p or  = +½  

, - ½  = +½ , e- = -½ 

0 0

u, d (quarks) ½ u = ½, d = -½ 

all other quarks 0 0

 or 0 0

, , 1  = -1,  = 0, =+1 

 mesons 1 =1,  = 0,  = -1 

 baryons 2 =2, =1. =0, =-1, =-2

Table 7. Some isospin examples. Subscripts L or R designate left or right-chiral.

 of hadrons is easily found by summing the respective values for the constituent quarks.142 For combinations of 
hadrons, Clebsch-Gordon coefficients are necessary. 

6.5.Gauge symmetry
Global symmetries are physical and have physical effects, and they conserve charge (Noether). Gauge 
invariance is not physical, being “… merely a redundancy of description we introduce to be able to describe the 
theory with a local Lagrangian.”143 Gauge symmetries are internal symmetries, functioning in”hidden”, 
unobservable space. They allow changes in the configuration of the underlying, unobservable field(s) that have 
no distinguishable effects on observable properties. In fact, the internal space may not exist. It is only the 
symmetry which is a necessary assumption, not the extra dimensions.144 The standard example is the EM vector 
potential , specific changes in which leave the electric and magnetic fields  and  unchanged. Only  and 

 are observable, not . The unobservable field is called the gauge field and a gauge transformation 
changes it from one configuration, or gauge, to another. Examples are the Lorenz or Coulomb gauges for EM.

For instance, if the field in our Lagrangian changes by

,

the Lagrangians themselves remain unchanged (invariant). So phase changes are changes of basis which do 
not affect the observable variables. Such a phase transformation is a global one, because  is a constant and 
so has the same value everywhere. Gauge symmetries, though, can be transformations which are functions of 
location (if  not constant) and so are local symmetries. The transformation indicates how the transformed 
function changes with respect to position (Imagine a rotation angle which depends on the position of the object 
being rotated.) and so connects together different locations. This local transformation then is said to define 
connections between points, usually by participating in the covariant derivative.  As in the case of GR, 
connections can be thought of as measuring the curvature of space caused or measured by the gauge field 

142 “Isospin”. www.asc.ohio-state.edu/gan.1/teaching/winter10/Chapter5.pdf
143 Schwarz, 130-131.
144 Maldacena, 9.
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which is the connection. So it can be found by parallel transporting the field around a small, closed loop.145 In 
fact, it is possible to treat GR as a gauge theory based on symmetries of the Lorentz group SO(3,1).146

6.6. Interaction Lagrangians – U(1) symmetry and QED
Symmetry considerations are not only valid for finding the form of free-particle Lagrangians, they can also be 
used to find interaction terms. A unitary transformation 

does not change, for instance, the Dirac Lagrangian. A unitary transformation can be viewed as a “rotation” of a 
complex state vector in Hilbert space which does not change the magnitude (“length”) of the state vector. It is the 
same everywhere in spacetime and so is a global transformation. But SR and its speed limit make such a global 
transformation problematic,  although this is debated. In any case, let’s try a local transformation by letting  
depend on the coordinates. Then

and . (6.7)

Such conversion of a global symmetry to a local one is referred to as gauging the symmetry. 

In order to understand why this is important, consider the Dirac Lagrangian

(6.8)

and the local U(1) transformation

, (6.9)

which is a phase rotation through an angle which varies from point to point in space. Under this transformation 
the mass term in the equation is clearly invariant, but the derivative term is not, since

. (6.10)

This should not be surprising, since the derivative measures the rate of change in space and so depends on 
subtraction of one field from another infinitesimally separated from it. In the direction of a vector 

. (6.11)

But since the phase transformation varies from  to , the bracketed subtraction is meaningless. We need 
something to compensate for this variation. We can obtain this by defining a scalar comparator which 
expresses the difference between points x and y and transforms like this:147

(6.12)

with . 

Now (6.11) is replaced by the covariant derivative

 . (6.13)

Since this depends on an infinitesimal difference, we can expand the comparator as

, (6.14)

where  is called a connection, because it connects point  to point . Then the covariant derivative 

145 Schwichtenberg shows an example of this. NNQFT, 129-35.
146 Carroll (2024), 198.
147 Peskin and Schroeder, 482-483.
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becomes

, (6.15)

a very important equation.

As a consistency check, by inserting (6.14) into (6.12), we find that  must transform as

. (6.16)

Not only that, but taking into account the transformation of  by (6.9) and of  by (6.16) shows that

, (6.17)

so the covariant derivative now transforms like the field and the Lagrangian is unchanged. This is why  is 
called covariant.

We could have done this more simply, beginning with equation (6.10) for the derivative and introducing 
(produced out a hat) the connection field  into the covariant derivative (6.15). It is then easy to show that this 
step requires the transformation of  by equation (6.16). But this would have left (6.14) which shows clearly that 

 really is the element connecting the field at two infinitesimally separated points. In either case, though, we 
see that the covariant derivative is valid for any derivative of a state transformed by a local U(1) transformation.

Beginning only with the requirement that the Dirac Lagrangian density (6.8) be invariant under the local U(1) 
transformation (6.9), we have derived the covariant derivative and the transformation rule for the connection

.

There’s still more. One can take U(y,x) around a closed square path using (6.14) but keeping the term in ; or 
else consider the transformation of the commutation relation

.

Both methods lead to the invariant quantity

. (6.18)

This of course is the familiar EM field tensor and (6.16) is the gauge transformation of Maxwellian EM. So local 
U(1) symmetry gives us not only the covariant derivative and the transformation rule for the connection, the 
gauge field, but also the EM field tensor and thus all the ingredients for the QED Lagrangian.

That (6.16) be a U(1) symmetry also can be shown by considering the transformation

, (6.19)

with the map  from U(1) to 

. (6.20)

Then the identity  means 

and

       (6.21)
just as
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Equation (6.21) shows that (6.16) is a homomorphism to U(1)and so a representation of the U(1) group.148 

A few words on the covariant derivative. As seen, the derivative of a function is used to pass from its value at one 
point in spacetime to a point at an infinitesimal distance from there. If a field is submitted to a transformation 
which varies locally, something is needed to keep track of that change from point to point. Such objects are 
called connections. They should not be confused with the Christoffel connections of GR, although those have a 
logically similar function, serving to keep track of the changes of the basis vectors in terms of the metric.149 We 
have expressed the connection as an additional term to the derivative, which then becomes the covariant 
derivative of (6.15). At the same time, the connection introduces the vector field and in a sense is the vector field, 
give or take a proportionality constant. The vector field, in this case, is the photon. The connection necessary to 
take into account the local U(1) gauge transformation of the Dirac Lagrangian is the photon. 

The requirement of a connection introduces a new field, a gauge field, into the covariant derivative 
(6.15). The change in the transformation itself is expressed in the transformation of the gauge field, as in 
(6.16). Taking these factors into account makes the Lagrangian locally symmetric.

Equation (6.15) should be called a gauge covariant derivative, to distinguish it from the GR covariant derivative, 
but this appellation is rarely used. On the one hand, this is a notational device to make the equation look simpler. 
On the other, it tells us we need to know more than just the behavior of the free Lagrangian.

Meanwhile, back at the electron, we have a Lagrangian which is locally invariant under U(1) transformations:

. (6.22)

There is a problem, though. The equation now contains an electron and an interaction term, but nothing for the 
electron to interact with. So we have to add in the photon field itself and the way to do this is to  add to the 
Lagrangian its own massless Proca term (4.7), which we just have found to be invariant under the 
transformation. This addition makes the  dynamic. We could just as well (and perhaps more logically) have 
started with a Lagrangian for two free particles, one Dirac (6.8) and one Proca, which would have avoided having 
to add the Proca term here. In either case, the final result for this interaction is:

        (6.23)

Now the Lagrangian is invariant under local SU(1) transformation, which requires transforming all three, the Dirac 
and Proca terms and the interaction term, according to (6.9) and (6.16). The first term in (6.23) is the Dirac 
Lagrangian; the second, the gauge (vector) potential multiplied by the Dirac 4-current (6.5)  and the third, the 
Maxwell Lagrangian for a massless particle.

Note that the interaction term  contains elements of both the Dirac and Proca (vector) Lagrangian, which 
seems right for an interaction between the two particles. It also shows what it means for a particle to have a 
charge, since q=0 removes the interaction term.

This technique (or recipe) of adding together free fields and then using the covariant derivative to bring out their 
interaction is called minimal coupling, since it ignores such things as magnetic moments. A theory which 
introduces a field, , to bring about local invariance is a gauge theory, so the field  is the gauge field. As 

148 Thanks to Gaussian97 at Physics Forums, https://www.physicsforums.com/threads/symmetry-of-qed-interaction-
lagrangian.995118/. Homomorphisms are explained by Jeevanjee, 138 and 188.

149 According to Sean Carroll, the connections can be calculated, as in GR, by considering the parallel transport of a vector 
in the space. https://www.preposterousuniverse.com/blog/2020/06/30/the-biggest-ideas-in-the-universe-15-gauge-theory/
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one book puts it, the gauge field is “… designed to roll around spacetime cancelling [sic] out terms that stop the 
theory from being invariant.”150

Now the Lagrangian is the correct Lagrangian for the quantum field theory of electrodynamics, QED:

        . (6.24)

Adding local phase invariance to the Dirac field requires the inclusion of a massless vector (gauge) field, the 
electromagnetic field. Repeat: The  field is the direct result of requiring local symmetry.  All QED (as well as 
classical EM, of course) comes from Lorentz and local U(1) invariance + a bit of imagination.   If you don’t find 
this amazing, you should.  

We could write the equation using the covariant derivative for the components of the vector potential also, but the 
differences cancel out. Note that equation (6.23) and both variants of (6.24) represent the same physical system.

Then the Noether current

, (6.25)

is the electric four-current. The zeroth component of this is the electric charge density, so the total charge is the 
integral of this quantity:

,

because of normalization. So by Noether’s theorem, global U(1) symmetry means electric charge is conserved.

Recap: 

1. Start with a Lagrangian for a spinor, which is invariant under a global U(1) transformation.

2. Gauge it, i.e., make the transformation local.  

3. In order for the Lagrangian to be invariant under the local U(1) transformation, use the covariant 
derivative (6.11) to introduce the vector field , and 

4. require that  transform like (6.9), i.e., like a spin-1 particle under the same local U(1) transformation. 
Now the Lagrangian is locally invariant under SU(1).

5. Add in a Proca Lagrangian for the spin-1 particle so that the Noether charge will be non-zero and  
dynamic.151

There is another way to understand the interaction term. Start with Maxwell’s equations in tensor form and the 
Lorenz gauge (i.e., with currents) and include the electron charge152,

. (6.26)

We have already seen by (6.5) and (6.1) that the current for a Dirac electron is given by

with ,

150 Lancaster and Blundell, 128. 
151 Robinson’s section 4.5.3 is an excellent and concise presentation of this gauging of the spinor field.
152 Following Klauber.
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so from (6.26) for a photon, we can write

 . (6.27)

We have just linked Maxwell and Dirac by using the latter’s electron current density from (6.5) in the former’s 
continuity equation. In other words, we have assumed that the Maxwell current is composed of Dirac electrons, 
by which we have linked the two and showed the interaction between them. The result is that, in general,  and 

 are no longer independent of each other.

From the Lagrangian (6.24), the Euler-Lagrange equation for  leads us to the interaction form of the Dirac 
equation.

. (6.28)

This has been applied to the hydrogen atom by assuming no magnetic field and pure Coulomb charge, so that

, with .

The result of the analysis gives a relativistic fine-structure that correctly describes the observed spectrum.153

In quite a similar way, one can construct the locally gauge-invariant Lagrangians for a massive charged scalar 
field with a massless vector field and for a massive vector field with a massless one.154 So locally gauge-invariant 
Lagrangians are available for the interaction of a massive scalar, Dirac or vector field with a massless vector 
field.

In fact, as Robinson puts it: “Starting with a a non-interacting Lagrangian that is invariant under the global SU(N), 
we can gauge the SU(N) to create a theory with a gauge field (or synonymously a ‘force carrying field) , which 
is an  matrix. Hence, every Lie group gives rise to a particular gauge field (which is a force carrying 
particle, like the photon), and therefore a particular force. For this reason, we discuss forces in terms of Lie 
groups, or synonymously gauge Groups.” 

We will see shortly (in section 6.11) how breaking a local symmetry leads to a gauge field’s taking on mass.

That is the importance of these concepts in physics: 

Group theory and gauge transformations (or gauge theory) explain all the forces of nature.155

6.7.SU(n) gauge invariance
In order to ensure the local gauge invariance under U(1) symmetry for a spin-½ particle, three things were 
required:156

• introduction of a massless vector (spin-1) field, which we take to represent a photon, including its free 
Lagrangian; 

• addition of an interaction term depending on both types of fields (through the use of the the covariant 
derivative); and

• taking into account the different transformation representations of the spinor and vector fields (the latter 
being the same transformations used for the vector and scalar potentials of classical electromagnetism).

This was expressed in equations (6.9), (6.15) and  (6.24).

153 Klauber, 185-6.
154 Schwichtenberg, PS, 142-3.
155 In principle, this includes gravity, but I’ve never seen it demonstrated.
156 Griffiths, Elementary particles, 360.
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Equations (6.9) and (6.15) can be generalized to arbitrary dimensions.157 For any group SU(n). composed of 
 matrices, with  generators and of rank , a general transformation will be  

 and the gauge fields transform like

. (6.29)

which reduces to (6.16) for . If we write the transformation (summed over a) as

,

where  are the  real parameters and  are the generators, the covariant derivative will be158

. (6.30)

Remember that for n>1, the generators are matrices and may not commute, meaning we are dealing with non-
Abelian groups. In this case, the field tensor is

, (6.31)

where the final commutator term vanishes for U(1). From these last equations, we see that a Lie group implies 
the existence of gauge fields (6.29) which represent forces. This is summarized in Table 9 on page 98.159 

We can go further, although the calculations are more laborious and the results, more complicated. This is 
because the SU(2) and SU(3) groups, being matrices and not simple exponentials, are non-Abelian. Gauge 
theory of such fields is Yang-Mills theory. 

6.8.SU(2) gauge invariance
We can study local SU(2) gauge invariance for two equal-mass Dirac fields by expressing them as one two-
component column vector, or doublet.160 A unitary matrix then can be expressed in the form

,

where  is Hermitian. We can use the Pauli matrices, , to form a basis, so that

.

For local SU(2) symmetry, the s in the second term are functions of position. In this case, the derivative of the 
SU(2) unitary operator will bring down a factor proportional to a linear combination of the three Pauli matrices, , 
and so the calculation requires not one, but three massless vector fields in order to guarantee invariance. The 
covariant derivative then can take on the form of (6.30):

. (6.32)

In order to make the Lagrangian invariant under local SU(2) transformations, the vector fields must transform like

. (6.33)

157 After Robinson, 240-1; Maggiore, 244-6..
158 Maggiore, 245-6.
159 After Schwichtenberg, PS, 133; Mggiore, 244 (in somewhat different notation).
160 Using notation of Blundell and Lancaster, 425-9. See also Griffiths, op. cit., 361-6
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To complete the comparison with the SU(1) Lagrangian of (6.24), we need the force tensor

, (6.34)

Then the locally invariant SU(2) Lagrangian is

, (6.35)

Remember, this is for two equal-mass Dirac fields interacting with three zero-mass vector gauge fields. But no 
such two equal-mass Dirac fields are known. And the best candidates for the gauge fields, the W and Z bosons, 
have masses around 100 GeV, nowhere near zero. To get out of this dilemma, we will need the notion of 
symmetry breaking, coming soon in Section 6.11.

6.9.SU(3) symmetry and QCD
Requiring local gauge invariance for three equal-mass Dirac fields, expressed as a three-component column 
vector and so under U(3) symmetry, will require the addition of 32 – 1 = eight massless vector fields. Here the 
three Dirac particles are identified with three quarks of the same flavor (and so mass) but different colors (red, 
blue, green) and the vector fields to be the gluons of the strong interaction force. Each gluon forms the source 
for a color current, in the sense of a Noether current.161 This set of particles forms the basis for quantum 
chromodynamics or QCD.

Note that all these cases require the existence of vector bosons, or gauge bosons. Gauge bosons are always 
vector bosons.162 In these examples, they are massless, but one can invent (unrealistic?) massive examples.163

Now the state vector164 representing three equal-mass particles is

,

so the Lagrangian looks just like the one-particle case but is in fact a three-component column vector each 
element of which is a four-component Dirac spinor. (Got that?) The symmetry group of this beast is U(3) with

,

so U may be written in terms of a Hermitian matrix H

where H may be expressed in terms of nine real numbers  and . The eight 3x3 Gell-Mann matrices , the 
SU(3) equivalent of the three Pauli matrices in SU(2), fit the bill nicely:

, , ,

161 Griffiths, 366-9. The following triplet example is inspired by these pages.
162 Quora, www.quora.com/How-do-gauge-bosons-and-vector-bosons-differ?share=1
163 Schwichtenber, 150, presents the exmaple of two massless Dirac fields (What would that be?), which requires three 

massive gauge bosons.
164 Or whatever it is called...
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, , ,

, . (6.36)

Note that, on the one hand, they are Hermitian and, on the other, that only  and  are diagonal, Cartan 
operators, meaning that the rank of SU(3) is 2. The number of generators is indeed . With these 
matrices, H may be expressed as

,

so 

.

The first part is U(1) and the equation expresses . So finally we want to transform the 
Lagrangian in such a way that it is invariant under local SU(3) gauge transformations.

, with .

Following the U(1) case of (6.11) and the SU(2) of (6.32), use a covariant derivative

(6.37)

where there are now eight gauge fields . We want the transformation to function as 

.

In the infinitesimal case, this yields a formula equivalent to (6.9) or (6.33)

(6.38)

with the cross product being

(6.39)

summed over all eight vector fields, where  are the structure constants of SU(3). Finally, the complete 
Lagrangian for chromodynamics is

. (6.40)

This just comes from requiring that the free-particle Lagrangian be locally invariant under SU(3). Comparing 
(6.40) to (6.23) and using (6.25), we see that the Dirac fields provide eight (one for each  matrix) color currents”

(6.41)

which constitute sources for the color fields . 

We have therefore described a state of three equal-mass Dirac particles, taken to be the three color states of a 
given flavor of quark, interacting with eight massless vector fields, the gluons. Equation (6.40) is the correct one 
for the strong interaction, one for each of the six quark flavors (red, blue, green and their anti-colors).165

165 All this derivation based on – almost copied from – Griffiths, EP, 366-369. Essentially the same derivation, some 
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The symmetries of this system are under rotations in the 3-dimensional color space. In general, a quark is not in 
a specific color state, the triplet being able to take on any direction in the space which sums the colors to white.

As in the SU(2) case (6.31),  now is not as simple as in QED, but contains a cross product of the vector field 
with itself:

. (6.42)

The cross product, defined as in (6.39), allows interactions to take place between one  field and another. 
Remember that we interpret field excitations as particles, via the creation and annihilation operators resulting 
from second quantization. So what happens here is that one field’s particle excitations may interact with 
another’s and “create” more particles. Such a field can be a source of itself, as in the case where a gluon may 
decay into a pair of gluons.166 So as we measure  the field farther and farther away from a quark, the color 
charge we see actually increases. This is the inverse of the QED case, wherein virtual e–e+ pairs form dipoles 
resulting in vacuum polarization which screens the electron charge, making it seem smaller at a distance.167 

We can interpret this interaction among quarks as being due to the fact that they carry color. This is contrary to 
the case of photons, which do not carry EM charge and so do not interact with each other by the EM force.168

The color force acts only between quarks and is responsible for binding them tightly one to another. But deep 
probes (inelastic scattering) show weaker coupling between them at higher energies, in agreement with the 
behavior of the preceding paragraph. Close together, they can act almost as if they were free, hence the name 
asymptotic freedom given to this phenomenon. It is the freedom of the quarks in the limit as the distance 
between them goes to zero. But as we try to pull them away from each other, the binding force becomes stronger 
as more gluons are created. This fact accounts for our inability to observe separate quarks. 

Since SU(3) non-Cartan generators describe color-changing rotations in color space, gluons must carry color 
from one quark to another. Therefore each gluon must correspond to a color and an anti-color, the latter taking 
away what the former donates, effectively exchanging one color for another. For instance, a “blue” quark may 
convert to a red quark (of the same flavor) by emission of a ( ) gluon, so color is conserved.

The matrix representation of gluons has the form169 

,

so each gluon is bicolored, with one positive unit of color and one negative unit. Consider then an  gluon:170

and three quarks

constants aside, is done by Lancaster & Blundell, 242-244, 307-308, but I can’t find that anymore.
166 For details, such as (6.41), not all of which I can claim to understand, see Lancaster & Blundell, 428-429.
167 Griffiths, 68-69.
168 They might do so at very high energies by mutating into an electron-positron pair. I don’t think this has been observed 

yet.   
169 Robinson, op. cit., 265
170 Example from Robinson, 254.
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, , .

Then the possible interactions are

, , ,

so the anti-green gluon only interacts with a green quark, which it converts to a red one.

6.10. Physical results of gauge symmetry
In all three cases of U(1), U(2) or U(3), in order to guarantee local symmetry, one can either write the interaction 
term or use a covariant derivative with an addition connection term. Note that for U(1) and SU(3), EM and QCD, 
the vector fields – photons and gluons – are indeed massless. Such is not the case for the W and Z bosons of 
the weak interactions, nor for an initial doublet (of one generation) of an electron and an electron neutrino, which 
otherwise could correspond to the SU(2) case.

Consider the general schema of what happens in the last cases.

• Take one, two or three spinors and write the globally symmetric free-field (Dirac) Lagrangian. 

• Make the global symmetry local by U(1), SU(2) or SU(3), which calls for an extra term in the Lagrangian.

• Include the extra term by using a covariant derivative with a connection which represents one or more 
vector particles, the gauge bosons. This also requires taking into account their transformation properties.

• For overall symmetry and non-zero Noether current, add in the free (Proca) Lagrangian for the gauge 
bosons.

You now have a locally symmetric Lagrangian for the original spinors plus a number (1, 3 or 8) of massless 
gauge bosons, including the interactions terms in their minimal coupling version. It only remains to identify this 
system with some particles in nature and their properties.

Klauber sums up an amazing general rule for QFT:171

If we start with the free Lagrangian and require it to be locally symmetric, then it can only be so if we add to 
it the particular interaction term(s) that actually describe(s) interactions in the real world.

He adds that local symmetry is essential for renormalization: No gauge invariance, no QFT.

As Sean Carroll points out, gauge theories not only give rise to forces, but impose constraints on interactions 
(through conservation laws due to Noether’s theorem).172 

On top of all that, gauge invariance of the QED Lagrangian requires the photon to have zero mass.

But there is more...

6.11. Spontaneous symmetric breaking and the Higgs 
mechanism

A magnet heated above a certain critical temperature, , loses its magnetism as the individually moving dipoles 
come to point randomly in different directions, making the system symmetric: Turning it through any angle 

171 Klauber, 296.
172 Carroll, video, gauge theory. https://www.preposterousuniverse.com/blog/2020/06/30/the-biggest-ideas-in-the-

universe-15-gauge-theory/. Carroll seems to be saying that multiple quarks are created, not gluons, but I doubt that.
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changes nothing observable. As the magnet cools back down through , a phase transition takes place and it 
becomes re-magnetized with the dipoles eventually all pointing in only one direction. Cooling, by forcing the 
dipoles to align, has caused the system to lose its symmetry, or to “hide” it. This kind of phenomenon is referred 
to as spontaneous symmetry breaking.173 

A similar event is supposed to have occurred around 10-35 seconds after the Big Bang, when a symmetric state of 
the Universe went through a phase change into a configuration which was no longer symmetric. 

In order to show how this can take place, we must modify our Lagrangian. The requirement that it be a scalar 
excludes odd powers of the field, so the next simplest equation to the Klein-Gordon Lagrangian for scalar fields is 
obtained by addition of a 4th-power term:

This Lagrangian has been used in the analysis of ferromagnetism and is known as the  theory, or phi-4 
theory. If the mass of the magnetic elements varies with temperature, we can suppose that, near the critical 
temperature , a Taylor series will give  for some constant c.174 Then for  the mass 
term in   has the sign of an ordinary scalar Lagrangian. However, below   the “mass” term is negative, 
corresponding to an imaginary mass, and so looks like part of a potential. In this case, the extremum at  is 
a local maximum and is unstable. This motivates changing the sign of the mass term. Then the minimum of the 

potential is not at , but at . Expanding the Lagrangian around one of these values  leads to 
a term for a real value of mass. Following these considerations, we will use as an example a complex version of 
the same  theory with an inverted sign of the mass term.175

Remember that SU(2) gauge invariance for a doublet of two equal-mass Dirac spinors (section 6.8)?  It requires 
the existence of three massless vector fields, but no such particles are known, nor are the initial equal-mass 
spinors. Here is where symmetry breaking comes to the rescue.

In order to get an idea of what happens, consider a simpler two-  scalar   configuration and U(1) symmetry, which is 
Abelian.176 We will complexify the system by taking linear combinations of the two fields,  and .177

, so  (6.43)

so that

.

The system now consists of a complex scalar. Then a  Lagrangian with inverted mass-term sign178 for the two 
fields can be written

. (6.44)

The inverted sign on the mass ( ) term looks like the mass is imaginary, which is not physical.179 Or, as already 
mentioned, one can say it looks like part of the potential energy. Now global rotational symmetry of this system 
is U(1) symmetry, which is Abelian. The minimum of the potential, the two right-hand terms, is not at , but 
on a circle at 

173 Example from Griffiths, 376.
174 Schwartz, 562.
175 That was a hand-waving defense of equation (6.44). Another defense is the fact that it works
176 Blundell and Lancaster, 430-431, treat the same problem with a non-Abelian field. 
177 Notation from Griffiths, 376.
178 Grabbed out of a convenient hat...because it works. But we see only in a moment that it represents a scalar. Defended by 

Schwartz, 562.
179 Griffiths, 373.
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,

corresponding to the inside of the brim of the sombrero in the image, the so-called “Mexican hat potential”. (It has 
also been, more accurately in my opinion, compared to the bottom of a wine bottle.180) Since any point on the 
circle represents the same vacuum energy, the vacuum is degenerate.

Figure 4: “Mexican hat potential”, from Free Thought Blogs181

We are in a situation like that of the magnet at > . In case of a “phase transition”, the system can fall into any 
state on this circle – but only one. The system still possesses symmetry, but it is obliged to choose only one state 
and this selection of one state spontaneously breaks the symmetry.

Choice of a state of minimum, or vacuum, potential puts the system at a specific point on the inverted brim of the 
hat, where a particle can move in one of two perpendicular directions:

• perpendicular to the rim, in which case it must roll uphill, against a force (the gradient of the potential), 
thus behaving as if it had mass;

• along the rim, in which case the potential does not change and the lack of any force on the particle is 
interpreted as it’s being massless.

Global U(1) symmetry allows us to choose a gauge in which the vacuum is at some real value of , .182 
Nevertheless, the new field will be complex, depending on two real parameters:

and .

Expanding the Lagrangian leads to

.

This now looks like a real massive scalar , with m= , plus a massless real scalar field  , plus some 
interaction terms. This is a general result called Goldstone’s theorem: Global symmetry breaking always leads 
to the existence of a massless boson, called a Goldstone boson.

That was for breaking of global symmetry. In order for the Lagrangian to be invariant under local U(1) gauge 
transformations

, (6.45)

180 I have much more experience with wine bottles than with sombreros. 
181 Illustrating the Higgs mechanism, Part 1. https://freethoughtblogs.com/atrivialknot/2016/06/27/illustrating-the-higgs-

mechanism-part-1/
182 This example from Robinson, 236-8.
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we must employ the usual trick of introducing a massless vector gauge field  and a covariant derivative , 
such that183

(6.46)

and

. (6.47)

Let’s choose a particular state, thus breaking the symmetry, by changing coordinates so that

and . (6.48)

Then the Lagrangian expands to184

. (6.49)

This Lagrangian represents the same state as (6.47), only now it contains the following terms (separated by 
brackets):

• One term which looks like the K-G Lagrangian for a scalar particle  of mass . (Spoiler: This is the 
Higgs field.)

• A second term which corresponds to a massless scalar Goldstone boson.

• A Proca term for the vector field  which – lo, behold! – now has a mass

,

which is proportional to the shift  in  and so is also due to the potential minimum’s not being at 
symmetric zero.

• An extraordinarily messy term coupling the three fields ,  and  (not shown).

• A term in , which looks inconveniently like a  turning into an .

So we can say that local U(1) symmetry and subsequent symmetry breaking by the translation of the field 
zero, which we will see is its vacuum state, to the minimum of the potential has conferred mass on two fields, 
scalar and vector, and produced a third – unwanted – one. 

Both these problem terms involve . That can be fixed. We can specify a particular gauge for the U(1) 
transformation (6.45) so that185

. (6.50)

Then

becomes real and , which eliminates both the Goldstone boson and the unfortunate  interaction 
term.186 Finally, we have

183 Griffiths, 378-80.
184 Griffiths, 379.
185 Robinson, 238-9, applies such a unitary gauge earlier, which simplifies the series of equations. A different path yet is 

taken by Blundell and Lancaster, 239-242.
186 Griffiths, 380.
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+ interaction terms and a constant. (6.51)

We started with one complex scalar field and a massless vector field. From that, local symmetry breaking has 
led to a single, massive (vector) gauge field  and a single massive scalar field , called the Higgs field. The 
mechanism whereby the scalar field is conferred a mass by shifting the field zero is called the Higgs 
mechanism. 

 Recap:

• Break symmetry by expressing the Lagrangian relative to the vacuum, at a non-zero minimum value of 
the potential.

• Choose a gauge to eliminate Goldstone bosons and give mass to a scalar.

So we have made the following discoveries:

• Breaking  a global symmetry always leads to the creation of a massless Goldstone boson.

• Local symmetry requires the presence of a gauge field, and breaking the symmetry adds mass to that 
field.

We have seen this in the case of global and local U(1)-invariant Lagrangians. Since the quantities involved are 
scalars, they commute and this is an Abelian gauge theory.

Note well that in equations (6.45) through (6.51), the force-carrying vector boson field  is introduced in 
order to assure local U(1) symmetry. The Higgs only shows up as a result of symmetry breaking. Sabine 
Hossenfelder claims that, for this reason, most physicists don’t call the Higgs a force. “The reason is that the 
exchange particles of electromagnetism, the strong and weak nuclear force, and even gravity, hypothetically, 
all come out of symmetry requirements. The Higgs-boso [sic] doesn’t. That may not be a particularly good 
reason to not call it a force carrier, but that’s the common terminology. Four fundamental forces, among them 
is gravity, which isn’t a force, but not the Higgs-exchange, which is a force. Yes, it’s confusing.”187

We shall see shortly that the Feynman method of adding possible states is a perturbation theory around a 
ground state (or vacuum) which is a state of minimum energy, hence the necessity of a choice of vacuum (6.48) 
which brings about spontaneous symmetry breaking. Then a suitable gauge choice (6.50) causes the gauge field 
to “eat” the Goldstone boson and gain a mass. At the same time, it acquires a third polarization state, whereas 
massless particles only have two.188 So we can say:

Local gauge invariance + spontaneous symmetric breaking  Higgs mechanism.

This is the process which is supposed to have taken place when the Universe was very, very young and which 
brought about creation of mass for the weak-interaction gauge bosons  and .

The Higgs mechanism is responsible for the masses not only of vector bosons but of fermions (e-, , …)  and 
even quarks. A more nuanced statement of this is “…the Higgs field is indirectly responsible for the fermion 
masses... It just allows you to have consistent extra terms in your initial Lagrangian, which would give you the 
mass terms result...”189  Proton and neutron masses, though, come not from Higgs but from quark binding energy. 

187 “The fifth force”, https://backreaction.blogspot.com/2021/07/whats-fifth-force.html?
utm_source=feedburner&utm_medium=email&utm_campaign=Feed%3A+blogspot%2Fermku+%28Backreaction%29.

188 Griffiths, 380-1.
189 Higgs field mass of fermions. Physics Forums. https://www.physicsforums.com/threads/higgs-field-mass-of-
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For once, Wikipedia explains it simply and understandably:

“The simplest description of the [Higgs] mechanism adds a quantum field (the Higgs field) that permeates all 
space to the Standard Model. Below some extremely high temperature, the field causes spontaneous symmetry 
breaking during interactions. The breaking of symmetry triggers the Higgs mechanism, causing the bosons it 
interacts with to have mass.”190

6.12. Electroweak interactions
It is supposed that when the Universe was less than 10-12 seconds of age, the weak and EM forces were parts of 
an electroweak force which unified the two into one. This force was symmetric before a phase change resulted 
in “spontaneous” symmetry breaking and bestowed masses on the gauge bosons. 

In this document, we have not yet reached understanding of the weak interactions, much less the electroweak. 
Starting with two equal-mass Dirac fields got us nowhere, which is understandable, since we don’t know what 
such initial state would be (section 6.8). And the predicted gauge bosons were massless, which the  and the 

 are not. The “simple” version of the Higgs mechanism we have considered started from two scalars, but what 
could they be? We need to take into account the experimental result that although electrons may show left or 
right chirality, neutrinos only have left-handed chirality. All are excitations of Fermi fields. 

6.12.1. La recette

Here’s the recipe for what we will do, with references in square brackets to following explanations:

1 triplet of massless .  and  [1]

1 local U(1) transformation[2], a function of weak hypercharge , with its associated gauge field,  

1 local SU(2) transformation [3], a function of isospin, , with its associated gauge field, 

1 covariant derivative on the wave function  for each of the two local transformations [4]

Define the values of ,  and  for the triplet particles (Table 8)

Separate left and right-chiral parts in the triplet [5]

1 four-component complex Higgs field  [6] of non-zero mass  with its U(1) and SU(2) covariant 
derivatives

1 term for the interaction between the Higgs and the fermions [7]

Add ingredients together [8] to get the Weinberg-Salam electroweak (EW) Lagrangian

Break the symmetry [9] by defining a simple ground state using a unitary gauge

[10] Note that the EM transformation looks like what we did for the EM field, so all that is still 
good and Maxwell’s equations are valid.

[11] Fold together, let rise (expand) and identify terms to get non-zero masses [12] for the 
electron,  and  .

So let’s get cooking.

fermions.752061/
190 Higgs mechanism, https://en.wikipedia.org/wiki/Higgs_mechanism.
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6.12.2. La cuisine
[1] We need a triplet with left and right-chiral electrons plus left-chiral neutrinos.191 In line with what we just said 
about spontaneous symmetry breaking, we will take them all to be massless. We are then led to a column vector 
which is significantly more complex than it looks here, because the elements contain Dirac spinors:

.

At a moment just after the Big Bang, we assume the system possessed local U(1) and SU(2) symmetries. 

[2] Define the local U(1) transformation by

(6.52)

with a required gauge field-theory

. (6.53)

The factor  is the strength of the coupling of particles to the weak hypercharge, Y. Note that it is not a 
parameter in the transformation (6.52) but comes from the transformation of  (6.21). In fact, to say say that a 
particle is charged means that such a term occurs in the covariant derivative.192

[3] Similarly, we can write the effect of the local SU(2) symmetry by the transformation (6.32-6.34)

,

and

.

[4] The corresponding covariant derivatives are then

U(1):

and

SU(2): ,

where I is the isospin. I have picked  for the U(1) part and  for the SU(2),193 although each author uses 
something different. The values of Y and I for these leptons is shown in Table 8.

191 I am following here the method of Lancaster & Blundell, chap. 47. Numbers in bracket are mine, steps in the recipe.
192 Robinson, 202.
193 Like Robinson.
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Field Higgs boson Symmetry group

Y -1 -1 -2 +1 U(1)

I ½ ½ 0 ½ SU(2)

I3 ½ -½  o

Table 8. Weak hypercharge Y and isospin I of leptons

The Lagrangians and covariant derivatives can be written in terms of left ( , ) and right ( ) parts, which 
simplifies the equations somewhat.

[5] We can simplify matters a bit by splitting the Dirac Lagrangian into left-chiral and right-chiral parts by writing 

,

with

, .

[6] Since we know these particles are not at all massless, this is where we need the Higgs mechanism. It is a 
four-component field with hypercharge and isospin defined as in Table 8. Its covariant derivative then looks like 

. (6.54)

As before (6.44), the Higgs contribution to the Lagrangian is a phi-4 potential with positive mass term:

. (6.55)

[7] Since we want to understand the interactions among these particle, we need to add a term for the interaction 
between the Higgs and the electron/neutrino fields. We use

, (6.56)

where  is the coupling strength. This is analogous to the EM interaction term,  from (6.22).

[8] When this is done, we get the Lagrangian for the Weinberg-Salam electroweak model in all its glory.

. (6.57)

The first line contains terms for the massless, left and right-chiral Dirac particles (fermions); the second, the 
Higgs  potential; the third the fermion-Higgs interaction term; the last the boson fields for the  and . 

[9] Starting with the total Lagrangian for the three massless fermions and the Higgs, including the interaction, we 
break the symmetry by assigning a particular ground state to this last field, in the “gutter” of the sombrero-shaped 
potential, such that
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. 

Then we can pick a gauge transformation of such form that the ground state is 

. (6.58)

This is the form of a unitary gauge. Then

, (6.59)

where  is the constant background value of the Higgs field.194

[10] First, notice that the total local transformation from U(1) and SU(2) is

,

which is equivalent to 

,

with

, (6.60)

the Gell-Mann-Nishijima relation. This is the same U(1) transformation which led us to QED in section 6.6, and 
so the electroweak theory is consistent with Maxwell’s equations. Whew!

[11] Inserting (6.59) into the Higgs-lepton interaction term (6.56) in the electroweak Lagrangian leads to the 
electron mass in terms of the coupling strength of this interaction, , and the Higgs ground-state parameter :

 , (6.61)

. (6.62)

So the Higgs field is responsible for the mass of the electron. Since the neutrino does not occur in the equation, 
its mass remains at zero, fortunately. Looked at the other way, the Higgs mass is given by  and has 
been found experimentally to be 125.10 0.14.195

[12] But there’s more. We can calculate the value of 

 higher order terms (6.63)

Looking for boson mass terms of the form ½ (mass)2 x {field}2.. we find massive vector particles  and 

 with mass squares  and a linear combination  whose mass depends on the 
coupling constants. We then use a shorthand notation in terms of something called the weak mixing angle (or 

194 Schwichtenberg (2015), 155,
195 Particle physics data group,  https://pdg.lbl.gov/2020/listings/rpp2020-list-higgs-boson.pdf. There is a factor of 2 

difference with Robinson due to his definition of the ground state .
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Weinberg angle):

,

so that

, .

From this we define two fields as follows:

, . (6.64)

Then the last, mixed term in (6.63) becomes

and we see that the mass of the  is .

Finally, after a fair amount of math, we can express the physical particles as sums of the W and B fields.

, ,

, . (6.65)

So, once again, symmetry breaking has contributed a mass to the  and  fields but leaves the  field 
massless, as desired. The  and  vector bosons are the force-carrying fields of the weak force. 

Again, the  are sums of non-Cartan generators of SU(2) and so are ladder operators, capable of raising or 
lowering the charge. They constitute what is referred to as a weak charged current, responsible for events like 
the decay of a neutron into a proton, an electron and an anti-electron-neutrino. On the other hand,  and  are 
sums of Cartan generators of SU(2) and U(1)Y, respectively, and will not change the charge. Since the basis 
vectors are eigenvectors of the Cartan operators, the result of operating with them just gives the eigenvalue 
multiplied by the same basis vector. The  is thus responsible for the weak neutral current, accounting, for 
instance, for neutrino-electron scattering. Back in those very brief times, the good ol’ massless EM photon was 
not just a descendant of the EM gauge boson but a linear combination of that and of the Cartan generator of 
SU(2). The  is massless and a single U(1) symmetry remains unbroken. These are the field and gauge group 
of EM. The  and  masses are quite large, making the weak force effective only over a very short range.

This result was obtained by symmetry breaking. Before the symmetry broke, there was only a Higgs complex 
vector field with three massless vector boson gauge fields, each behaving generally like a photon. The low-
energy, “broken” theory is based on four linear combinations of the original fields, three of which have gained 
mass. The original high-energy state is the content of electroweak theory. The original three photon-like fields 
break to form two distinct forces, the broken weak and the unbroken EM. Looked at the other way around, the 
merging of two states into one at high energies is called unification.

Putting everything together, one can calculate a Lagrangian for the electroweak gauge fields and the Higgs 
boson in unitary gauge. The resulting four-line equation (6.57) leads to the following conclusions.196

• The photon field  does not couple to the Higgs field, as there is no term with the product of the two. 
So the photon remains massless.

196 Srednicki, 530; Robinson, 258-9.
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• The  fields do interact with the Higgs field, there being a term proportional to . This gives 
mass to these bosons and also accounts for the decay of the Higgs particle into pairs of W (and Z) 
bosons, which allows us to detect it.

6.13. Summary – Forces and particles
The notion of symmetry is based on a transformation after which a system is left in a different state but behaves 
the same. Such transformations are seen as changes resulting from the application of forces. Since each 
symmetry of the Lagrangian is described by a Lie group, we can take a representation of the Lie group in order 
to describe the results of applying a force to the system described by the Lagrangian.

Valid Lagrangians possess symmetries. Indeed, what constitutes a valid Lagrangian is imposed by the 
requirement of Lorentz invariance – symmetry under Lorentz transformations. Noether's theorem tells us that for 
each symmetry, a calculable quantity is conserved -- energy or momentum or angular momentum, for instance, 
but also spin, hypercharge or color. This quantity will be the generator of the symmetry. (Think jz.)

Lie groups tell how rotations, Lorentz boosts and changes of phase (unitary transformations), described 
respectively by SU(2), SU(2) and U(1), modify vectors within the vector space of the representation of the group. 
In many cases (spin, hypercharge, isospin), these rotations take place not In the 4-d space of SR, but in internal 
states of the system. 

A representation is described by means of a Lie algebra, which is made up of the generators of a 
representation. Although the dimensions of representations vary, the number of generators of all those of a given 
group is always the same and equal to the order, the number of the group’s parameters. 

Some of the generators are diagonal and therefore correspond to eigenvectors, which can be used as a basis for 
the vector space of the representation. Such generators constitute the Cartan subalgebra of the Lie algebra and 
their number is the rank of the algebra. The eigenvalues are the physically measurable charges of the particle on 
which the force acts, and are equal in number to the dimension of the fundamental representation, which in the 
case of SU(n) or SO(n) consists of  matrices. In other words, an arbitrary vector will have components 
along different eigenvectors of the Cartan generators. Transformations of the group then will rotate one vector 
into another, changing the eigenvalues to which it corresponds, as will a rotation on . The “rotations” may be in 
real space, in Minkowski spacetime or in some internal space, such as spin or color space.

An arbitrary SU(n) group always has  generators and is of rank , whereas an arbitrary SO(n) group 
has  generators.

One more time!

• A fundamental force – strong, weak, electromagnetic or, hopefully one day, gravitational – is described 
by a representation. We therefore describe a physical system by means of a Lie algebra.

• The eigenvectors of the diagonal Cartan generators describe the particles which are acted on by the 
force. 

• The eigenvalues are the physically measurable charges (such as spin) of the particles.

• The number of charges fixes the dimension of the fundamental representation.

• The generators of the group, which parameterize the  infinitesimal changes wrought by the 
transformation on the vector space of the representation, correspond to the gauge bosons, the force-
carrying particles – photons, gluons, W and Z bosons – which act on the physical particles. There are 
two sorts.

Symmetry, groups and quantum field theory 96 2024-09-05 14:44



◦ Cartan generators represent forces which act on all charged particles in the group by transferring 
energy-momentum.

◦ Non-Cartan generators not only can transfer energy-momentum but also can be combined to 
constitute creation/annihilation (ladder) operators which change the charge, interpreted as the 
number of particles.

But symmetry and QFT bring more than the understanding of forces and how they arise. 

For instance, in SU(2), there are three generators, , of which only one is a Cartan generator, by convention 
. Its eigenvectors form a basis for the space. In the 2-dimensional representation, for , the eigenvectors 

represent particles of positive and negative charge (spin), . The non-Cartan generators,  and , are 
used to construct ladder (raising and lowering) operators which change the charge, in this case, the spin. 

In the case of the strong force, the 3-dimensional fundamental representation of SU(3) gives rise to the three 
eigenvalues which are the three quark colors. The gauge bosons describe how the colors are changed. 

The Cartan generators (photon, ) represent force-carrying particles which can modify, say, position or 
momentum, but without any change in charge. The non-Cartan generators (W bosons, gluons) are those which 
comprise the QM raising and lowering operators, so it is not a surprise that they can also bring about changes in 
charge.197

6.14. So what’s the big deal?
Quantum field theory is at the heart of modern physics, explaining QED, QCD, the electroweak force and much 
of the Standard Model. It is based on Lagrangian mechanics and takes into account the requirement of Special 
Relativity that the Lagrangian must be invariant under Lorentz transformations, As we have seen, this means it 
must be invariant under SU(2), the covering group for both SO(3) and the restricted Lorentz group . This 
limits possible forms for the Lagrangian, as we saw in section 4.

Deal 1: Invariance under Lorentz transformation leads to the form of the Lagrangian for scalar, spinor and vector 
particles and fields.

Applying local gauge invariance to free-field equations for various numbers of spinors leads to an interaction 
term, often expressed as an additional term in the covariant derivative, and to the existence of additional 
massless spin-1 particles or fields (bosons). This is summarized in Table 9.

197 Robinson, 116-117.
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Field/
force

Spinors Lie 
group

Order Fundamental 
representation

Cartan 
ops

Eigen-
vectors

Gauge 
fields/particles

Conserved 
charge

EM 1 U(1) 1 1 2 1 massless 
photon

electric charge

Weak 2 SU(2) 3 ,  = Pauli 
matrices

1 3 3 massive 
(with Higgs) 

bosons (W and 
Z)

isospin

QCD 3 SU(3) 8 ,  = Gell-Mann 
matrices

2 3 x 2 e-
vals 
each

8 massless 
gluons

color charge

Table 9. Effects of SU(n) transformations on spinors.

Deal 2: Invariance under U(1) and SU(3) leads to EM and QCD.

In particular, invariance under a gauge transformation – meaning local changes in charges – requires the 
existence of a point-to-point connection which is identically the EM field that obeys Maxwell’s equations.

U(1) and SU(3) symmetries thus give rise to photons and gluons, the massless vector “particles” of EM and 
strong interactions, respectively. In the case of the weak interactions, the W and Z particles concerned are most 
definitely not massless, so we must draw on “spontaneous” symmetry breaking198 and the Higgs mechanism in 
order to bestow masses on those gauge particles ( ).

Deal 3: Invariance under SU(2) and U(1)Y leads to the electroweak theory, complete with masses for the 
electron,  and , with EM as an invariant subset which retains its U(1) symmetry and massless photon.

6.15. Construction of SU(3) multiplets – the Eightfold Way
SU(3) has ( ) = 8 parameters and so 8 generators in every representation, whatever be the dimension of 
the representation.199 In its fundamental representation of 3x3 matrices, the standard generators are taken to be 
½ the Gell-Mann matrices, :

, , ,

, , ,

, . (6.66)

198 I object to the word “spontaneous” here, which indicates the symmetry breaking is not brought about by an external 
agency, to be confusing to the point of being incorrect. But I have no better candidate.

199 Robinson, 111-116.
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Only two of the generators are diagonal and so Cartan generators,  and , meaning that the rank of SU(3) is 
2.  All the generators are Hermitian.

The upper-left quadrangles of  -  are the Pauli matrices. So the first three matrices are a closed SU(2) 
subgroup of SU(3).

Being a 3-d representation, this one has three eigenvectors, each one with a pair of eigenvalues, which in turn 
means three basis vectors.

,  and .

(We could perhaps better call them u, d and s without waiting, but....) Pairs of eigenvalues for  and  can be 
represented by so-called weight vectors, column doublets in this case, of pairs of eigenvalues for a given 
eigenvector. They are

, and , (6.67)

corresponding to the basis vectors  ,  and .

Remembering the happy results of defining ladder operators in SU(2) and SO(3), let’s try this for SU(3). First, 
define the generators by

 . 200. (6.68)

Then take what is called the spherical representation of the F operators.201

, ,

,

, . (6.69)

One can work out the commutation properties of these operators, including definitions of  and  by analogy 
with :202

, ,

, ,

, . (6.70)

We have already noted that the T’s form a closed SU(2) subset. The first line of (6.70) confirms that the operators 
 are consistent with the Lie algebra for SU(2) of (3.12). The same thing can be shown to be true 

for the  and  operators:

,

, .

All three subalgebras of SU(3) – call them T-spin, U-spin and V-spin – are isomorphic to SU(2). (The whole 
thing is sometimes referred to as F-spin.) Better yet, ,  and  are ladder operators. Call our two Cartan 

200 Apologies for not distinguishing carefully between superscripts and subscripts in this context.
201 I am ignoring the hats which should adorn the F and  operators.
202 Greiner, 203-204, 212-215.
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operators  and  (isospin 3-component and strong hypercharge203), and our eigenvectors , so that 
(denoting eigenvectors by lower case)

, .

Then

,

by (6.70), which tells us that

,

i.e.,  is a couple of ladder operators which raise/lower  by ½.204 In a similar manner, one can show that

 lowers/raises  by ½, i.e., in the opposite direction to . Then 

may be used to show that

,

so  raises/lowers y by 1. The same is true for .

So, more succinctly, including as-yet uncalculated normalization constants:

,

,

. (6.71)

From these equations, we can diagram the actions of the ladder operators in the t3 – Y plane.

Figure 5. Action of ladder operators in T3 – Y plane of the fundamental representation of SU(3).

Now we can understand some interesting points.

The SU(3) algebra includes the three T, U and V subalgebras, each of which is isomorphic to the algebra of 

203 The strong hypercharge is not the weak hypercharge we met in section 6.12.
204 We are also not worrying about normalization factors here.
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SU(2).205 So SU(3) multiplets can be constructed from coupled T, U and V multiplets. 

Since  and  are linear combinations of  and  by (6.70) , all four may be simultaneously diagonalized, 
with eigenvalues

,  ,   and .

The ladder operators shift the SU(3) multiplet states as in Figure 5, where the operator end-points are on a 
regular hexagon. So an SU(3) multiplet will be constructed from a T multiplet parallel to the T3 axis and U and V 
multiplets parallel to the U and V axes in Figure 5. They are coupled by the non-zero commutation relations 
among them, e.g., .

The symmetry among the T, U and V algebras requires symmetry with respect to the , 
 and  with an angle of 1200 between any two. Normally, the SU(3) 

multiplet is centered on the origin . Further symmetry considerations show that an SU(3) multiplet 
must be a a regular triangular or hexagonal structure.

Within the F-spin algebra, the T, U and V-spin subalgebras appear symmetrically, so the simplest non-trivial 
SU(3) multiplet will contain doublets of all three.206 This leads us to the diagrams of Figure 6. Each diagram 
contains an isodoublet  and an isosinglet . For the representation , the isodoublet is composed 
of the states

and

and the isosinglet

.

The values of the hypercharge Y may now be determined. From the diagram,  and  form the U-spin doublet, 
so the singlet must be .

.

Then the definitions of  and  may be used to find  the eigenvalues of :

, ,

and the corresponding negative values for the antiparticles. The charge is given by the Gell-Mann-Nishijima 
formula

. (6.72)

The charges are then

, , .

So the representation is of three particles with fractional charges – the quarks (i.e., the lightest three quarks) u, d 
and s ( ,  and ).

205 Greiner, 212.
206 This overview of the subject must be qualified as “quick and dirty”. For a more compete version, see Greiner, 231-3.
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Figure 6. The smallest non-trivial representation of SU(3)

The values for  are the negative of these, those of the corresponding antiquarks. It is clear from the 
eigenvalues that the  diagram represents particles, the  diagram, antiparticles. In support of this, the 
Gell-mann-Nishijima formula shows that

==> .

They are the two fundamental representations of SU(3). “In principle the construction of all irreducible 
representations of the [sic] SU(3) requires only one of the two fundamental representations  and . … 
However, for reasons of physics, one needs both fundamental representations, because quarks (represented by 

) and antiquarks (represented by ) differ by their baryon number (B=1/3 for quarks, B= -1/3 for antiquarks) 
and charge.”207 With these baryon numbers, the Gell-mann-Nishijima relation works out consistently for the 
charges.

Remember that SU(2) representations (multiplets) can be constructed from the fact that each corresponds to a 
value  with dimension  and states . Alternatively, they could be 
constructed by successive coupling of the fundamental doublets . This latter method will be 
used to construct SU(3) multiplets from the two fundamental multiplets   and . 

An SU(3) multiplet expressed as a combination of p quarks and q antiquarks is denoted D(p,q).208 A state 
deemed of maximal weight is constructed starting with p quarks of maximal weight state  and q antiquarks 
of maximal weight state , so the state has the following values of  and  for this maximal state:

and . (6.73)

This state will be the farthest to the right on the diagram. Other states are then constructed from it by use of the 
ladder (shift) operators  and . Then the states  and  of Figure 6 are the single-quark state D(1,0) and 
the single antiquark state D(0,1). 

207 Greiner, 242.
208 This is, again, a quick version of what is explained in more detail by Greiner, 241-6.
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Figure 7. The baryon decuplet.

Take the example of the baryon decuplet of Figure 7. Using the D(3,0) representation, we know from (6.73) that 
the maximum point is at  with charge  q=+2, from (6.72). It therefore may correspond to the , 
composed of three up quarks, uuu. Now use  to construct the other three baryons on the right hand side, at 
each step reducing  and  by ½ and 1, respectively. This is equivalent to transforming an up quark to a 
strange one at each step and gives us particles successively at  ,  and . From each of 
these three, we may use  change the coordinates each time by , changing a strange quark to a down 
one each time, and this will generate the other particles. Or we could use , to get the equivalent diagram by 
changing up quarks one at a time to down ones. 

These diagrams are representative of what is called the Eightfold Way of particle physics.

The meson octet of Figure 7 is the D(1,1)=[8] representations formed of a quark and antiquark. These are the 
correct components of baryons and mesons. 

Figure 8. The meson octet.

The baryon octet of Figure 9 is more complicated and necessitates a digression. 

QFT proves209 that bosons must have symmetric wave functions and fermions, antisymmetric. This of course 
leads to the Exclusion Principle – on which the existence of chemistry and so everything else is based. The 
symmetry of a quark wave function has four parts – space, spin, flavor and color. The law requiring hadrons to be 
color neutral is in fact an example of a more fundamental law which states that “every naturally occurring particle 

209 Where?
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is a color singlet.”210 So the color part is antisymmetric, which means the rest must be symmetric. The ground 
state we are assuming must be spatially symmetric, so the product of the spin and flavor parts must be 
symmetric. The 27 (33) possible combinations of three quarks can be grouped into symmetric, antisymmetric or 
mixed states – a completely symmetric decuplet, a completely asymmetric singlet and two octets of mixed 
symmetry (antisymmetric in either particles 1 and 2 or 2 and 3).211 In group-theory speak, we can see this as the 
decomposition of the product of three fundamental states

.

Now the baryon decuplet is composed of completely symmetric states, since, e.g., what is called  in Figure 7  
can be considered as a symmetric combination , and so on for the other states. So 
this decuplet must go along with a symmetric spin state. The baryon octet is asymmetric in two quarks, say 1 and 
2. But the corner quarks would be uuu, ddd and sss, all highly symmetric. So they must go. Such is a somewhat 
hand-wavy argument for why the baryon octet looks like a triply truncated triangle.

Figure 9. The baryon octet.

Table 9 shows the most common particles, with their spin, quark composition and charge.

An important word on hypercharge. We have called the hypercharge Y and used it and the 3rd component of the 
isospin in the Gell-Mann-Nishijima formula for the charge:

. (6.60)

This is the strong hypercharge and has nothing to do with the weak hypercharge we will discuss in section 
6.12. It is the sum of the baryon (atomic) number A and the strangeness S and one often sees eightfold-way 
diagrams in terms of S. It is also twice the average charge, Q, since the average of  is zero. This is an old 
concept, developed in the 1960s and today the strong hypercharge is best represented as

, (6.74)

in terms of the number of up, down, strange, charmed, bottom and top quarks.

210 Griffiths, 187. 
211 Griffiths, 185-6.
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Baryons Spin Particle Quark content Charge

1/2

p 1

n 0

0

1

0

-1

0

-1

1

3/2

, , , 2, 1, 0, -1

, , 1, 0, -1

, 0, -1

-1

Table 10. Properties of most common baryons
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Spin Particle Quark content Charge

Pseudoscalar mesons

0

, 1, -1

0

, 1, -1

 , , 0

0

0

, 1, -1

 , , 0

, 1, -1

, 1, -1

 , , 0

Vector mesons

1

, , 1, 0, -1

, , , 1, 0, -1

0

0

, , , 1, 0, -1

0

Table 11. Properties of common mesons

7. Scattering
Before studying scattering, meaning transitions from one state to another, we need another picture.

7.1.The interaction picture
Back for the moment, to the Schrödinger picture (SP). From the equation (6.24) for the total Lagrangian density, 
we can write the Hamiltonian (total, not density) as

(7.1)

  

which is just
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, (7.2)

the free part plus the interaction part. In this equation, represents any quantum field. The unitary time 
evolution operator is then

.

Let’s go to a special Heisenberg picture (HP) which is called the interaction picture (IP), one where the unitary 
transformation uses only the free part of the Hamiltonian:212 

. (7.3)

Since we have defined 

,  (5.44) 

the transformation from the SP to the IP is defined by

as in equation (5.45) for the Heisenberg picture, so that

. (7.4)

Then, because  commutes with itself, the free part of the Hamiltonian 

, (7.5)

but the same is not generally true of the interaction part, . So from (7.2) and (7.5), the interaction-picture 
Hamiltonian is

. (7.6)

This notation can be confusing: 

• The subscript  refers to the interaction energy of the EM field and the Dirac electron; 

• the superscript  indicates the interaction picture.

Remember that

. (7.7)

The equation of motion for an operator in the IP is then

, (7.8)

where the last quantity

(7.9)

is for our purposes always 0. It can also be shown that213

. (7.10)

212 This is the version of Klauber, of Lancaster and Blundell and of Schwichtenber PS, but he uses a different method in 
NNQFT.

213 Klauber, Solution, problem 7.8, 7-5.
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The equations of motion for states in the IP depend only on the interaction part of the Hamiltonian.

This is worth repeating:

• The equations of motion (7.8) for operators in the IP depend only on the free part of the Hamiltonian. 

• The equations of motion (7.10) for states in the IP depend only on the interaction part of the Hamiltonian.

The first point means that all the results we have studied above for free fields in the HP apply also to operators in 
the IP. Since that applies to HP field operators like ,  or . this means that we can use the K-G equation for 
scalar fields, the Dirac equation for spinors and the Maxwell equation for photons. Not only that, but we can use 
the free-field

• operator solutions,

• creation, annihilation and number operators,

• observables operators, and

• Feynman propagators.214

There remains “only” to solve equation (7.10) for the states.

The following table summarizes the situation for the three picturex.

Picture Schrödinger Heisenberg Interaction

states -

operators -

For expectation values.

(7.11)

This is the same equation as that for the expectation value in the SP, even though operators in that picture do not 
vary in time.

Note that both methods of deriving the IP agree in their results for the time-evolution dependence of the 
operators and state vectors.

7.2.The S-matrix and ordering 
We’ll use the word “scattering” rather largely. 

Consider the implications of the division of the Hamiltonian into a free part and an interaction part. To calculate 
the probability that a particular reaction or scattering process takes place, we want the real amplitude between 
the initial and final states

,

corresponding to the entire Hamiltonian, free plus interaction. But the states we see around us are free ones, 
corresponding to . They are the same as the true, or real, states at , but not necessarily (or usually) 
at any other time. 

214 Klauber, 194.
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. (7.12)

Rather than defining one of the two types of states in terms of the other, we define the real amplitude in terms of 
the free states and the S-matrix.215

. (7.13)

So to calculate scattering amplitudes, we need the simple states and a way to calculate . We will use the 
eigenstates of  and will henceforth drop the 0 subscript on the bras and kets.216

Using the interaction picture, the initial and final states can be taken as free states, so we can construct them 
from the vacuum state by using the creation and annihilation operators we have already studied.

As for the time-evolution operator, we know that the states in the IP evolve by the interactive part of the 
Hamiltonian, and so

,

which leads to the equation for the unitary time evolution operator 

. (7.14)

Unfortunately, since  may not commute with itself at different times, the “simple” solution

is shown to be incorrect when this is expanded in a power series, as we must do in order to solve it.217 Instead, 
we must use the time-ordered solution

, (7.15)

where the time-ordering operator (It’s not really an operator, but a specification of method) arranges the 
elements of each term of the power-series expansion of the formula from right to left in order of increasing time. 
So now we have learned of two methods of ordering operators:

• normal ordering puts creation operators on the left, annihilation operators on the right;

• time ordering puts operators in order of increasing time from right to left, earliest to the right, latest to 
the left.

Merging (7.13) and (7.15) gives us the S-matrix equation

. (7.16)

7.3.Contractions and Wick’s theorem
Equation (7.16) for the S-matrix uses time ordering, but normal ordering is easier to work with, as the annihilation 
operators on the right destroy a vacuum state, as do creation operators on the left, thus simplifying the equation. 
Here is where we need contractions, or Wick contractions. A field operator such as those we have found in, for 
instance equations (5.58) are sums of creation and annihilation parts. Note that we are now using the opposite 

215 One more genial idea of John Wheeler.
216 I rather like this introduction to the S matrix, as given by Blundell and Lancaster, 166-7, on which this one is based.
217 Schwichtenberg, NNQFT, 388-9.
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notation to that of section 5218, so  now denotes the creation part and  the annihilation, which we therefore 
want on the right in normal ordering. We could consider this for two operators  and  such that

.

where this pair of operators differs from normal ordering , often delimited by colons as , by the 
commutator of A and B,

.

Or we could consider the same operator evaluated at different spacetime moments, using the notation of (5.59).

,

where the + and – superscripts now again refer to creation and annihilation terms, respectively.219 Then

. (7.17)

In either case, this tells us that we can normal-order operators as long as we include the appropriate commutator 
terms. It looks interesting because a commutator either is zero or has a value like some multiple of  and maybe 
a delta function. In other words, it’s just a number, perhaps complex, called a c-number. Since time ordering of 
the same two operators gives

,

( ) then the difference between the time-ordered pair and the normal-ordered one 

(7.18)

is so useful that it is defined to be the contraction or the Wick contraction. The first term in the commutator is 
time-ordered, since it is originates from the time-ordered sequence, with the creation term on the right, as that is 
the one left over after subtraction of the normal-ordered sequence. In the case of two operators, we can find their 
contraction by calculating the result of their time-ordered product between  and , since the normal-ordered 
part will give zero and the contraction, by (7.18), is simply a commutator, a complex number.220

. (7.19)

Since fermions do not commute but anticommute, a factor of -1 is introduced for each contraction of a pair of 
fermions.

(Note on notation: A contraction symbol is most often like a square bracket lying on its side, either above or 
below the characters involved, with its two ends pointing at the operators to be contracted. Not finding this in 
TexMaths for LibreOffice, I am obliged to settle for an underline, which will not always be adequate, in which case 
I will be forced to fall back on words. Another possibility, used by Wikipedia, is with bullet superscripts, where 
pairs are linked by an identical number of bullets:. E.g., , where AD is a contracted pair and 
BC is another. Then  .)

Equation (7.18) is a special case of Wick’s theorem, for a pair of operators. The theorem states, more generally, 
that a time-ordered product of creation and annihilation operators can be expressed as the normal ordered 

218 Klauber’s notation.
219 Be aware that some authors, such as Klauber or Peskin and Schroeder, use the + and – superscripts in the opposite 

sense, with  being the annihilation operator. Comprenne qui pourra.
220 Lancaster and Blundell, 172; Schwichtenberg, QFT, 427.
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product of the fields plus the normal-ordered sum of all possible contractions of the fields.221

For an arbitrary number of fields, this is:222

.

Note that the entire expression on the right is normal-ordered, including the contractions; i.e., each term is 
normal ordered. The theorem can be proved by induction.223 The really useful fact here is that when operating on 
the vacuum, the normal-ordered term will annihilate the state vector, on the right or on the left ( ), and 
so gives zero. So nothing is left but the contractions. Only completely contracted terms will give non-zero results 
in a transition amplitude between initial and final vacuum states.

An example of a more complicated case would be that of four operators, in which individual contractions of 
operators as well as of pairs of contractions must be taken into account.

.

If A and B are free scalar fields  and , then the quantity

is the Feynman propagator of equation (5.73).

Now we can prepare a summary of important contractions for later use.224 (Beware of slightly different notations 
or factors of I among authors, especially in the propagator terms.)

, the Feynman propagator (7.20)

(7.21)

(7.22)

(7.23)

(7.24)

(7.25)

While we’re at it, let’s write the contraction formula (7.18) in terms of our  variables:

. (7.26)

Last but not least, Wick’s theorem

(7.27) 

221 Schwichtenberg, op. cit., 428.
222 Lancaster and Blundell, 172; Schwichtenberg, QFT, 428.
223 Peskin and Schroeder, 89-90.
224 Schwichtenberg, QFT, 430-6, 461.
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7.4.Putting it all together – the Dyson series
So, now, we have Lagrangians for free scalars, spinors and vectors. Requiring (local) gauge invariance under our 
favorite Lie groups gives us minimal-coupling interactions, and we can use those to build the S-matrix for particle 
interactions plus creation and destruction of particles or energy quanta. And we can use operator commutation 
relations to simplify the search for solutions. So what does that give us?

The time for even the limited amount of detail we have been giving is past. We must accelerate. We will merely 
summarize the rest of this section.225

We want to 

• start from nothing, the vacuum state, 

• build some initial and final states, and 

• investigate the ways in which one can transform into the other. 

Starting from the transition amplitude of equation (7.13) and based on the vacuum state, we want to consider 

,

where now S must not only create the necessary particles to give us our initial and final states but also represent 
the time evolution of the initial state into the final one. The classic example used is the  theory with scalar 
Lagrangian (6.44), i.e.,

, (6.44)

which leads to the Hamiltonian

, (7.28)

containing a “free” and an interaction part.226 Hopefully,  is a small quantity so we can ignore higher orders of it 
in our calculations. We know from equation (7.16) that we must use the time-ordered evolution operator so the 
scattering operator, the S-matrix, is

,

using the interaction part of the Hamiltonian.227 This can be expanded to give the transition amplitudes

 

      

       . (7.29)

This is the Dyson series. Note that we are in the interaction picture (IP), so we use the interaction part of the 
Hamiltonian, as was calculated in equation (7.14). Note also the presence of the time-ordering operator  in all 
terms from  on.

225 Summary based on Schwichtenberg, NNQFT, section 11.7.
226 Schwichtenberg, QFT, 407.
227 Schwichtenberg, QFT, 393.
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As an example, let’s consider 2-pion scattering with the  potential of equation (Error: Reference source not 
found). Our initial and final states are then

and

For simplicity, we will consider only initial and final states where .

Various techniques can be used to evaluate the zero-th order term to 1 in the case of equal momenta for the two 
pions before and after “interaction”228, otherwise zero. This is the case of nothing happening, and that is not 
interesting. So we will skip on to the first-order term.

The formulae (7.20) through (7.27) can be used to evaluate the first and second order terms, which we will 
simply cite here.

where V is the volume integrated and in principle will disappear at a later moment.

7.5.The final step – Feynman diagrams
Now we have a power series (7.29) to represent the probability amplitudes we want to calculate. Each term is a 
product of contractions. The evaluation of the terms in the series is facilitated greatly by the use of Feynman 
diagrams. Here’s how it’s done.

• The total transition amplitude is represented by a power series, each term of which is represented by a 
diagram. 

• Just as each term in the series is a product of contractions, so will each diagram consist of a selection of 
factors corresponding to the contractions. Their value is given by the so-called Feynman rules, which 
depend on the interaction type. One set of Feynman rules is just the equations (7.20) - (7.25).

For our examples, Feynman diagrams are constructed according to the Feynman rules for the  model. which 
are resumed in Table 12. The rules give the diagrammatic representation and the amplitude factor for each 
possible type of contraction.

Each term in the series will include a power of the coupling constant for the basic interaction,  in our  
examples. More complicated terms (diagrams) lead to higher powers of the coupling constant (cc). If the cc is 
small, as for QED where its standard value is approximately , higher powers will be so small they can be 
neglected and this simplifies the calculation. For the strong force, this is complicated by the creation of virtual 
gluons referred to in section 6.9 which make the cc at a distance seem much larger than 1. Fortunately, at closer 
distances the cc becomes smaller and calculations are possible.229

228 Leaving out a whole lot here. See Schwichtenberg, op. cit. 409-11.
229 Griffiths, 70.
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Contraction of represents Amplitude factor

a field with a particle in the initial 
state,  

an incoming external line coming from 
outside and leading to x

a field with a particle in the final 
state, 

an outgoing external line starting at x 
and ending outside the diagram

a field with itself, an internal line running from x to y  (propagator)

a point where lines meet a vertex, denoted by a dot  for each vertex

a line entering and leaving without 
interaction 

Table 12.Feynman rules for  potential.

The first three of these configurations are just restatements of equations (7.20) - (7.25).

It is Wick’s theorem that allows us to write any expression of the form

as a sum of products of Feynman propagators. Let’s go back and consider the four-field case. simplifying the 
notation some from the second part on.230

.

When we sandwich this between two vacuum states, with the help of (7.20), the result is

. (7.30)

since the normal-ordered term and any un-contracted terms result in 0. In terms of Feynman diagrams, this case 
gives the following three ways of connecting points 1-4.

Figure . Feynman diagrams for equation (7.30).

230 Peskin and Schroeder, 89-90.
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More interesting examples include these for two-particle scattering.

Figure B. Feynman diagrams for s, t and u-channel scattering.

The amplitude matrices for these diagrams, assuming coupling constant g at both vertices, are as follows:

,

for the s-channel,

,

for the t-channel, and

for the u-channel. The quantities s, t and u are the Mandelstam variables. They satisfy 

,

the sum of the invariant masses of the four particles involved. Note that the s-channel represents an annihilation, 
whereas the t and u channels are scattering processes.

8. Path integral formulation
The path-integral formulation of QFT, usually attributed to Feynman but in fact invented years before by Dirac, 
takes off from the double-slit experiment. It assumes multiplication not only of the number of slits but even of the 
screens containing them until there is nothing left but space. We must integrate over all possible paths between 
the light source and the chosen destination point on the detecting screen in order to find the result of the 
superposition of all those waves. So the integral is not just over the paths due to the two slits, but over all 
possible paths in space between the source and the destination. Hence the name, “path integral”.
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We will look at this in some (not much) detail in order to get a good idea of what the final result means. Spoiler: 
It’s all about phases.

The amplitude for a particle to start at spacetime point  and propagate to  can be calculated by using 
the unitary time-evolution operator: 

.

In order to integrate over all possible paths, we first break the time interval into N segments, each of length 
. 231 Since the time-evolution operator is unitary,  and we can 

use time slicing:

.

In order to get a product of amplitudes between neighboring states, we insert N-1 identity operators, each of 
which is curiously called a fat unity,232

.

Collect the integral business at the beginning and rename the initial and final states a and b to avoid confusion:

,

which contains a product of mini-propagators. We then can use a classical Hamiltonian operator like 
, but the q states are not eigenstates of . So we jump over to a p representation by inserting 

fat unities for p, thanks to Mr Fourier:

.

An individual mini-propagator then looks like

, 

where the three exponential factors are the kinetic energy, the Fourier factor and the potential energy. Having 
replaced the operators by their eigenvalues, we then go back to x via

, (8.1)

to get

,

which – believe it or not – can be integrated (Gaussian integral). Doing so and putting everything back together 
gives

, (8.2)

231 This particular explanation is from Blundell and Lancaster, 210-212. I think it is the clearest. See also Robinson, 219-222 
or Townsend, 218-226 (the most complete/).

232 Blundell and Lancaster, 211.
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where  absorbs some constants. Now let , which means  and our sum 
becomes an integral, so that, finally,  

, (8.3)

where L is the Lagrangian, S the action 

(8.4)

and

. (8.5)

Equation (8.3) is a sum over paths with each path weighted statistically by . 

To understand this, note that a set of  represents a jagged line between fixed points  and , a 
sequence of short straight-line segments with each segment starting from the spatial end of the preceding one 
and at a time equal to that of the preceding one plus . As  and , the string in the exponent 
becomes an integral over t, from the beginning point  to the end point . A set of  then defines a path 
from a to b. The exponential integral over defines a functional, the action S[q(t)], which is calculated 
using that path. So each path is weighted by a path-dependent factor which changes only its phase. 

Note that the result (8.3) is essentially a product of exponentials, each one of which contributes a phase. One 
can expand the difference between the phase at the minimum of the action and that at a point infinitesimally 
close to it in a Taylor’s series. If the result is evaluated at a point close to the minimum of the action, its first 
derivative will disappear, so the difference will be a minimum and the phases almost the same. They then will 
add constructively and the probability amplitude at this point will be large. So the probability will be greatest at 
the point of minimum action, in accordance with classical mechanics. Although this may not be important for an 
individual event, the statistical sum of such events will show a strong probability for the classical result at a 
minimum of the action.

This derivation does not depend on use of SR or of the commutation relations of second quantization, making 
the path-integral formulation an alternative to second quantization. It can even be derived without mentioning 
operators at all.233

In order to actually use this formulation to calculate probability amplitudes, we introduce the generating 
functional234

, (8.6)

where 

and we introduce an external source . Note the square brackets to indicate that  is a functional of J, 
not a function. We also need the functional derivative, or generating functional, defined by analogy with 

 by

233 Townsend, 224.
234 Lancaster and Blundell, 201-203. I’m not sure why I included this. Could just skip it.
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(8.7)

so that

.

Then

brings “down”  evaluated at the point  and 

,

where  is the vacuum state. Better yet, applying this derivative n times gives

  ,

where the operators on the right are automatically time-ordered. (What more can we ask?) So the generating 
functional (functional derivative) can be used to calculate any amplitude. Find it and your problem is solved. 
Right, as John Cleese would say!

Indeed, for the classical scalar Lagrangian density (5.52), this can be solved235 and the resulting amplitude is the 
Feynman propagator of (5.75). Although the result lacks the term  in the denominator, this will be recovered 
later in the boundary conditions for S-matrix calculation, but we won’t go there.236

9. Renormalization
Anytime there is a loop in a Feynman diagram, there is the possibility of an infinite result. Consider the diagram 
in Figure 10, a possible Feynman diagram.237

Figure 10. Possible second-approximation term (s-channel)

It is clear that all we can say from conservation of energy is that . The quantity  is 
undetermined and so integrating over all possible values of it goes like

(9.1)

235 See Schwartz, 262 or Robinson, 225-227.
236 But Scwartz does, 264-266.
237 The loop could just as well be represented as a square.
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and diverges logarithmically. 

The classical way of handling this problem was the method of Feynman, Schwinger, Tomonaga and Dyson, to 
“renormalize” QFT by canceling so-called infinite counterterms. This works, as “QED is the most precisely tested 
theory of all time.”238 The more modern way of doing this is due to Ken Wilson and is called Effective Field 
Theory, or EFT. This method does not obsolete the older one, as different cases are easier to solve with one or 
the other.

In EFT, we admit we do not know what is going on above some energy called the cutoff energy and denoted 
here by . Above this energy is the so-called “ultraviolet (UV)” zone of higher energies; below, the “infrared 
(IR)” zone of lower energies. EFT supposes that it is possible to do physics on the low-energy level without 
worrying about the higher-energy stuff, since we can’t observe it anyway. In fact, this is what we do all the time, 
since we really don’t know what is going on up there. This being the case, our integrals probably should not 
extend into this unknown region just in order to satisfy convenient boundary conditions. Specifically, EFT 
proposes handling Feynman diagrams with loops, which give infinite results, as sums of diagrams below  and 
then the result is finite – sometimes.

Dimensional analysis is helpful for understanding. Assuming  :

, and

along with

give us 

.

Then the scalar field-theory Lagrangian goes like

and .

This tells us that , so . Now expand the interaction  in powers of ,

.

If we assume a cutoff energy , we can guess that ,  and . We then work at 
energies well below , where  should be irrelevant. The terminology is

, are relevant interactions

are marginal interactions

,  … are irrelevant interactions

With luck, there will only be a small number of relevant or marginal terms, and this usually turns out to be the 
case. But what is really advantageous is that the physical results of EFT calculations do not depend on the 
cutoff. This is because the coupling constants, , evolve with changing . There is a specific functional form 
for the dependence of the   on . The coupling “constants” – which are not at all constant – are said to “flow” 
or “run”along a trajectory in the space of theories.

This method of calculating is called the renormalization group, although it is not at all a group in the group-

238 Carroll
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theory sense. Referring to  as , “In a finite theory with a UV cutoff , physics at energies   is 
independent of the precise value of . Changing  changes the couplings in the theory so that observables 
remain the same.”239

There is an excellent analogy which considers firing a cannon … underwater. The cannonball now undergoes 
drag from the water. Nevertheless, its effective mass can be determined by shaking it to and fro, and this 
measured value then can be used in calculations, otherwise ignoring the influence of the liquid environment. But 
the effective mass varies with the velocity, since as the latter approaches 0, the effects of the water become 
negligible. “In other words, the presence of a medium can introduce a scale-dependent effective mass. We say 
that the effective mass is ‘renormalized’ by the medium. In quantum physics, every particle moves through a 
‘medium’ consisting of the quantum fluctuations of all particles present in the theory. We again take into account 
this medium by ignoring it but changing the values of our parameters to scale-dependent ‘effective’ values.”240

The Wilsonian renormalization group is only one of several methods for taming divergent amplitudes in physics. 
This is a vast  subject and, to my mind, somewhat less than passionately interesting – especially in the details – 
in spite of its importance. After all, if we can’t calculate it, we don’t really know it – at least not completely.

Let’s look at one aspect of this in somewhat more detail, at the risk of repeating things that have already been 
stated.

Often an integral which diverges can be “tamed” by putting a cutoff value on the variable of integration, usually 
denoted . It may even come about that  disappears in the final equation, even if we let it go to . The step of 
imposing a cutoff value is called regularization. Often, the integral in question is constructed in an unnatural 
way, with infinite limits to satisfy some idealized boundary conditions. Also, it is not certain – nor agreed upon by 
all physicists – that the SM is valid at very high energies. 

Consider the divergence discovered in the diagram of Figure 10. We will regularize the integral in (9.1) by using 
a cutoff  so the amplitude of order 2 can be written as241

,

which leads to

, (9.2)

where s is the energy scale  and C is a constant.242 We then compare the amplitude at two 
values of the energy scale and find

. (9.3)

Now we are getting somewhere. Define the renormalized coupling constant   by

. (9.4)

Then expand  about  using  and collect all this to get 

. (9.5)

239 Schwartz, 417.
240 Nelson, P. American Scientist, 73, 66 (1985). Quoted by Griffiths, 220.
241 Schwartz, 297.
242 Schartz finds .
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This is great! The renormalized coupling constant  is measurable at a given energy scale . Then the value 
of these two parameters can be used to predict the amplitude at any other energy scale  by (9.4). In fact, the 
renormalized coupling constant is the only one we can measure.

This result can also be derived from the Lagrangian by assuming an extra, infinite term, supposed of the order of

:

, (9.6)

for a real scalar field. Then from (9.2)

.

Choosing 

takes us right back to equation (9.4). The 3rd term in the Lagrangian (9.4) is called a counterterm. Such terms 
contribute an infinity to the Lagrangian but drop out when physical quantities are computed.

In résumé, we can quote another book:243

A renormalizable theory is one in which infinities to all orders of perturbation theory can be absorbed by 
the redefinition of a finite number of the parameters of the theory, such as masses and coupling 
constants. These parameters are then fixed from experimental observation.

In fact, it has been proven that all gauge theories, including those we have studied, are renormalizable.244

10. Physics and finance
It is interesting as well as instructive to consider the parallel between physics and finance.245

In a toy model of economic exchanges, start by defining the exchange rate

. (10.1)

Here  indicates the start point (country) and I the destination, taken as one unit vector away (I,j = x,y, for 
instance).  Since each “country” can adjust its currency at will, define the currency re-scaling factor, which is the 
gauge transformation,

. (10.2)

It is a gauge symmetry, since nothing material in the real world changes as a result of it. Then if the neighboring I 
country rescales its currency, the exchange rate  changes by

(10.3)

and these lead to

243 Barr et al., 3.
244

245 This section inspired by Schwichtenberg, PF, and Maldacena.
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which in the continuum limit becomes

. (10.4)

Comparison with EM shows that  is the gauge field, give or take a factor of i. 

Considering only circulation of currency (no charges or commodities), the currency gain factor 

. (10.5)

This equation assumes taking R around a closed loop from  to   to  to  and 
back to ,

  . (10.6)

This leads to

, (10.7)

which looks pretty much like the EM field tensor.  means traders can gain money, which can only 
occur if  so . In words, if an EM field is present.

Now introduce commodities, which we’ll take to be copper (Cu). Define the commodity-exchange gain factor

(10.8)

and the local commodity price

. (10.9)

The gain factor across one border is

which leads to

.

(This looks suspiciously like a covariant derivative.) We can define a current in terms of  which in the 
continuum limit leads to
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. (10.10)

Equation (10.10) shows the current as a sum of two parts, the first dependent on changes in the price of Cu, the 
second on changes of the exchange rate. We can call it a current because  measures the exchange of Cu 
between two countries and , in time within a country. Putting (10.3) into (10.6) shows that G and  are 
independent of price changes. Considerations of symmetry can inform us which quantities are independent of 
local conventions. 

All these exponential functions are really talking about Lie algebras in terms of their generators, which are the 
quantities we have considered.

One can also jump a mathematical level up and consider fiber bundles. A fiber bundle is helpful for representing 
a product of two spaces, as we have done for spacetime and the charge space . At each point of the base 
space, spacetime for us, a fiber is added, the internal charge space. A fiber bundle is a generalization of the 
direct product of two spaces.246

11. Review and summing up
Here is where we have been. We started this document with the following paragraph.

11.1. Really short summary
For physicists, a Lie group is a continuous transformation group. Its elements may be transformations such as 
rotations or translations but not reflections, as these are not continuous. Such groups are abstract objects, but 
we can imagine concrete examples in some space (for instance, spacetime or spinor space); these instantiations 
of the group are called representations. Since the Lie group and therefore the representation are continuous, 
the latter can be generated incrementally from the identity operator by using operators called generators. The 
generators are derivatives of Lie group elements (in a representation) and form a vector space called a Lie 
algebra. The generators are especially interesting to physicists because they may represent physical 
observables such as angular momentum or spin. They thus provide links between transformations and 
observables. This allows us to deduce properties of the world around us from properties of mathematical groups, 
which are thus a window onto the world.247

11.2. Lie groups and algebras – Forces and particles
The notion of symmetry in physics is based on a transformation after which a system is left in a different state but 
behaves the same. Such transformations are seen as changes resulting from the application of forces. Each 
symmetry of the Lagrangian is described by a Lie group, which allows us to use a representation of the Lie 
group in order to describe the results of applying a force to the system described by the Lagrangian.

A representation is described by means of a Lie algebra, which is made up of the generators of a 
representation. Although the dimensions of representations vary, the number of generators of all those of a given 
group is always the same and is equal to the order, the number of parameters describing the group 
transformations. 

Valid Lagrangians possess symmetries. Indeed, what constitutes a valid Lagrangian is imposed by the 
requirement of Lorentz invariance – symmetry under Lorentz transformations. Noether's theorem tells us that for 
each symmetry, a calculable quantity is conserved -- energy or momentum or angular momentum, for instance, 
but also spin, hypercharge or color.

246 More in Schwichtenberg, PF, 163ff.
247 I think Pythagoras would have loved this!
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Lie groups tell how rotations, Lorentz boosts and changes of phase (unitary transformations), described 
respectively by SU(2), SU(2) and U(1), modify vectors within the vector space of the representation of the group. 

Some of the generators are diagonal and therefore correspond to eigenvectors, which can be used as a basis for 
the vector space of the representation. They constitute the Cartan subalgebra of the Lie algebra and their 
number is the rank of the algebra. The eigenvalues are the physically measurable charges of the particle on 
which the force acts, and are equal in number to the dimension of the fundamental representation, which in the 
case of SU(n) or SO(n) consists of  matrices. In other words, an arbitrary vector will have components 
along different eigenvectors of the Cartan generators. Transformations of the group then will rotate one vector 
into another, changing the eigenvalues to which it corresponds, as will a rotation on jz. The “rotations” may be in 
real space, in Minkowski spacetime or in some internal space, such as spin or color space.

An arbitrary SU(n) group always has  generators and is of rank , whereas an arbitrary SO(n) group 
has  generators.

11.3. Examples
Symmetry and QFT bring more than the understanding of forces and how they arise. 

For instance, in SU(2), there are three generators, , of which only one is a Cartan generator, by convention 
. Its eigenvectors form a basis for the space. In the 2-dimensional representation, for , the eigenvectors 

represent particles of positive and negative charge (spin), . The non-Cartan generators,  and , are 
used to construct ladder (raising and lowering) operators which change the charge, in this case, the spin. 

In the case of the strong force, the 3-dimensional fundamental representation of SU(3) gives rise to the three 
eigenvalues which are the three quark colors. The gauge bosons (gluons) describe how the colors are changed. 

The Cartan generators (photon, ) represent force-carrying particles which can modify, say, position or 
momentum, but without any change in charge. The non-Cartan generators (W bosons, gluons) are those which 
comprise the QM raising and lowering operators, so it is not a surprise that they can also bring about changes in 
charge.248

11.4. QFT
The requirement of SR that equations be invariant under Lorentz transformations leads to the Lagrangians for 
particles of spin 0, ½ and 1, our old friends the Klein-Gordon, Dirac and Proca Lagrangians. From here, we can 
proceed along three (or four) different paths.

1. Use of the Euler-Lagrange equations on these Lagrangians furnishes the equations of motion for single 
free particles. The equations may be solved in terms of Fourier expansions of the field. We then employ 
second quantization: We quantify the fields themselves, making them operators by fixing their 
commutation relations à la QM. Then the coefficients of the terms are also operators and their 
commutation relations can be found. The result is that they are like the QM solution to the harmonic-
oscillator problem and can be combined to form ladder operators which “create” and “destroy” equal 
chunks of energy in the vacuum state. We may identify these “chunks” as particles. So use of second 
quantization leads to the existence of particles of the field. The solutions to the equations of motion also 
may be used to calculate the Feynman propagators, mathematical representations of a virtual particle 
destroyed at one point in space and time in the vacuum and (re)created at a later time at another such 
point.

2. The equations of motion are invariant under global transformations. Also requiring invariance under 

248 Robinson, 116-117.
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local transformations gives extra terms (connections) which can be included in a covariant derivative 
and require addition of another field, representing one or more massless gauge bosons which are the 
force-carrying particle for the field. 

◦ For a single spinor, imposing local U(1) symmetry leads to the interaction between an electron  and 
a gauge boson (photon) and to Maxwell’s equations – QED.

◦ For a doublet of two equal-mass Dirac fields, imposing local SU(2) invariance leads to the 
requirement of interactions with three zero-mass gauge fields. This is because the 2-dimensional 
representation of SU(2) is expressed by the three Pauli matrices and each one contributes an 
interaction term. The problem now is that the original fields have equal mass and that the gauge 
bosons have zero mass. The latter situation is obviated by symmetry breaking through the Higgs 
mechanism. The result then applies to the weak interaction and the W and Z bosons..

◦ A triplet of three equal-mass Dirac fields (quarks!) can be subjected to local SU(3) invariance which 
requires eight massless gauge fields, easily identified as gluons, the force-carrying particles of the 
strong interaction. Voila QCD.

3. One can use the S matrix approach in order to define scattering terms, leading to the Dyson series and 
Feynman diagrams. A more modern approach uses Feynman’s path-integral approach to construct 
terms of the interaction which correspond to Feynman diagrams. However we get there, we can use the 
diagrams to calculate interaction probabilities, some of which can use the Feynman propagators already 
mentioned.

The principal ingredients used in this cuisine are Lorentz invariance, mathematical Lie groups and Lie algebras, 
and the commutation relations of QM operators.

11.5. Why second quantization?
First quantization takes “ordinary” quantities, position and momentum, and quantizes them, which results in an 
equation for new entities -- probability amplitudes (wave functions) which entail discrete modes for the energy of 
a system like the hydrogen atom or a particle in a box. Second quantization quantizes the resulting wave 
functions into fields which, with their conjugate momenta, produce integral numbers of excitations of each such 
mode. They also result in creation, annihilation and counting operators to produce such states.

As Schwartz says: “At the risk of oversimplifying things things a little, that [second quantization] is all there is to 
quantum field theory. The rest is just quantum mechanics.”249 In his analysis, QFT brings two great advantages:

• Because of the creation/annihilation operators, it can account for multi-particle states. 

• The nth excitation state of a system is considered to represent n particles.

For instance, applying a creation operator twice to the vacuum creates a two-particle state (for bosons only).

12. Annex: Math symbols
Symbol Means

for all, for each

in, a member of

there exists

 or such that

249 Schwartz, 20.
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