
General relativity

An overview

John O’Neall

Table of Contents
1. Principles of General Relativity....................................................................................................3
2. The equivalence principle and curvature.....................................................................................3
3. Curvature and the mathematics of GR........................................................................................5

3.1. Manifolds.............................................................................................................................5
3.2. Tensors................................................................................................................................6

3.2.1. Vectors, one-forms (dual vectors) and basis vectors....................................................6
3.2.2. Of curves, surfaces and normals..................................................................................8
3.2.3. Higher-rank tensors......................................................................................................8

3.3. The metric............................................................................................................................9
3.4. The covariant derivative.....................................................................................................10
3.5. Parallel transport................................................................................................................11
3.6. Geodesics..........................................................................................................................13
3.7. The Riemann curvature tensor and friends........................................................................13

4. Back to physics..........................................................................................................................14
4.1. Four-velocity and four-momentum......................................................................................14
4.2. The energy-momentum tensor...........................................................................................14
4.3. Einstein’s gravitational field equations................................................................................16
4.4. Consistency – the equations of motion...............................................................................17

5. What GR tells us........................................................................................................................17
5.1. The Schwarzschild metric, stars and black holes...............................................................18

5.1.1. Gravitational time dilation and redshift........................................................................19
5.1.2. A bit of history.............................................................................................................20
5.1.3. Schwarzschild black holes..........................................................................................20

5.2. The cosmological principle.................................................................................................22
5.2.1. Robertson-Walker metric............................................................................................23
5.2.2. The expanding universe.............................................................................................23
5.2.3. The Friedmann equations...........................................................................................23

5.3. Other models of the universe.............................................................................................24
5.3.1. Empty-universe model................................................................................................24
5.3.2. Static Einstein model..................................................................................................25
5.3.3. De Sitter model...........................................................................................................25
5.3.4. Radiation-only model..................................................................................................26
5.3.5. Einstein-de Sitter model..............................................................................................26

GR -- an overview 1 2019-11-29



5.3.6. Different contributions to density and pressure...........................................................27
5.4. More on densities...............................................................................................................27
5.5. Gravitational waves............................................................................................................28

6. Bibliography...............................................................................................................................28
7. Annex: All you need to solve Einstein’s equations.....................................................................29

GR -- an overview 2 2019-11-29



1. Principles of General Relativity
Special Relativity (SR) is based on two principles:

1. The principle of relativity states that the laws of nature should be the same for all observers in 
inertial frames (defined below). 

2. All such observers, upon measuring the speed of light in a vacuum, must find the same result, c = 
299,792,458 km/sec.

The first requirement is necessary in order for physics to be coherent. It means that observers in inertial 
systems use the same equations. Rather than going on incessantly repeating “in an inertial reference 
frame”, let’s get it done with once and for all by stating:

SR considers only observers in inertial reference frames, those which move with constant, 
unaccelerated velocity relative to one another.

However, this inertial observer can perfectly well observe objects which are accelerating in his frame. We 
will see what GR has to say about inertial frames at the end of the next section.

The second requirement is a result of rather astounding experimental results. There is no known reason for 
it, that’s just how it is. Because of the constant speed of light, SR prevents us from considering space and 
time as being two separate things and explains how they are related and linked into a more global entity, 
spacetime1.

General Relativity (GR) builds on top of SR to take into account three additional requirements:

1. The principle of covariance is an extension of the first requirement of SR, requiring that physical 
equations be true in all coordinate systems. GR drops the requirement of inertial systems. In order 
to do this, new mathematical methods are required – tensors.

2. The principle of consistency states that the equations of GR must give the same result as the 
classical (Newtonian) equations when applied in the limiting case, e.g., in inertial frames.

3. The principle of equivalence exists in two or three different versions, but the strongest one is the 
most interesting, Einstein’s equivalence principle. This states that in a very small frame of 
reference, no experiment can distinguish between objects in a gravitational field or objects subject 
to uniform acceleration.

The principle of equivalence leads to new physics and a new understanding of the universe.

2. The equivalence principle and curvature
Imagine four cases:

1. An unaccelerated rocket is coasting along in space with its motors off, far from any matter which 
might give rise to a gravitational field, and with all the portholes covered so that an astronaut can 
see nothing outside. If the astronaut holds a wrench and opens her hand, the wrench stays next to 
her hand. In fact, if she drops two wrenches of different weights, they will both undergo the same 
acceleration, exactly as under the influence of gravity. Both will remain wherever she let go of them.

2. A person in a very high elevator, or an elevator in a very deep mine shaft, also has no view of the 
exterior. If the elevator cable breaks so that the elevator is falling freely and the person lets go of a 
wrench, the wrench will remain by his hand. 

3. Now consider the elevator as sitting still on the surface of the Earth. If the person in the stationary 
elevator lets go of the wrench, it is in his interest first to assure that his foot is not just below it, as 
the wrench will fall to the floor.

4. Meanwhile, back in the rocket, the motors are turned on so as to give an acceleration of 1g to the 
rocket. If the astronaut releases her wrench, it too will drop to the “floor” of the rocket.

1 Spacetime, in one word, sans hyphen.
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If you don’t like the idea of falling elevators (which was Einstein’s example), think of the reduced-gravity 
aircraft (aka the “vomit comet”) used for habituating astronauts to near-weightless conditions.

The first two cases illustrate the impossibility of distinguishing between free fall and an absence of a 
gravitational field; the last two, of distinguishing between a gravitational field from uniform acceleration. GR 
really starts with the recognition that uniform acceleration is indistinguishable from a gravitational field. 
Einstein’s equivalence principle is a precise statement of this idea.

The above four cases depend on one more very important – indeed, essential – thing. Newton’s second law 
of motion says that the acceleration of a body is proportional to the force on it, the proportionality constant 
being the object’s inertial mass, mI.

F = mIa

Newton’s law of gravitation says that the gravitational force on the same object is proportional to the 
products of the object's gravitation mass, mG, and the mass, M, of the source of the gravitational field.

F = G mGM/r2.

Experiments beginning with Galileo show to a very high degree of accuracy that the acceleration due to 
gravity is independent of the mass of the object. Equating the force and its effect gives

mIa =  G mGM/r2.

Galileo’s observation means that the mI and mG must cancel out and therefor be equal, using the following 
important fact:

The inertial mass of an object is the same as its gravitational mass: mI = mG

All of GR depends on this equality. making gravity accelerate all objects the same way, regardless of their 
mass or composition.2 But how can gravity know how to pull on such different objects so as to impart the 
same acceleration to both?3 It seems that gravity has nothing to do with the object, but is simply a property 
of space: In that case, what else can it be but curvature?

Consider race cars. At each end of a track, the roadbed is steeply banked to keep the cars from skidding off 
the road (as are highways, but less so, because motorists are not supposed to drive that fast). The angle 
and curvature of the track are partly responsible for the cars’ remaining on the track. Curving, even at 
constant linear speed, is a form of acceleration. 

So curvature – curvature of space – can explain the force of gravity in a far “simpler” way than having gravity
do something or other depending on the mass and composition of objects. In that case, it is not even a 
“force”, simply the curvature of space.4 As objects not submitted to other forces try to follow a straight-line 
path in a curved space, they naturally act as if they were accelerated – by gravity! Like the car on the race 
track.

But what the dickens would a straight line be in a curved space? Well, that is the matter of GR, the theory of 
gravity. In order to do handle this problem, GR must employ the mathematics of curved spaces called 
Riemann spaces.

Gravity is present everywhere, maybe not much at great distances from stars and planets, but certainly here
on the surface of the earth. So the only way to have an inertial reference frame, relative to which a particle is
not accelerating, is to use a frame which is freely falling with the particle, as in our first two cases. And the 
fact that all particles or objects are accelerated the same way in a gravitational field means that the one 
freely falling reference frame is good for all objects in that frame, as long as there are no other forces 
present which distinguish one object from another. The conclusion is: 

An inertial reference frame is one which objects and observers are falling freely.

Now we must see how to take curvature into account mathematically.

2 We can ignore friction, since experiments have shown that feathers and anvils fall at the same rate in a vacuum.

3 I lifted this question from Russell Stannard. Relativity: A very short introduction. Oxford: Oxford University Press, 2008. Print.

4 Some far-out current hypotheses like string theory suppose more (invisible to us) dimensions to spacetime. The curvature of these 
spaces could explain the other three forces, weak, strong and electromagnetic.
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3. Curvature and the mathematics of GR
GR continues like this:

• Space cannot vary too wildly or we could not calculate in it. So we assume that we can use 
standard methods of differentiation in a very small area of the space. This assumption leads to the 
notion of manifolds.

• In order to study curved space, we need to manipulate objects which enable us to write equations 
that satisfy the requirement that they be valid in all reference frames. Such objects are called 
tensors.

• The object used to measure the space, the metric, must be modified to become a function of space,
not just the constant one of Cartesian coordinates. It must reduce to the Cartesian metric in 
classical physics.

• In order to have valid differential tensor equations, the classical derivative must be replaced by a 
tensor called the covariant derivative. In the limit of ordinary physics, this should – and does – 
reduce to the classical derivative. This allows us to calculate the change in a tensor over an 
infinitesimal distance of smooth, differentiable curved space.

• The tensor equations of motion must reduce to their classical versions under the conditions of 
classical physics (the principle of consistency).

• And, of course, the theory must agree with observation – hopefully new ones or ones which did not 
yet have an adequate explanation. This is indeed the case.

An example of the last requirement: SR says that fast-moving objects have slower clocks relative to those of
a stationary observer. GR says that objects in a stronger gravitational field (a more curved space) have 
clocks which slow down. So objects like GPS satellites, far above the earth, appear to have slower clocks 
than those on the surface of the earth because they are moving (SR), but faster because they are farther 
from the source (Earth) of the gravitational field (GR). Both these opposite but unequal effects must be 
taken into account by GPS software.

3.1. Manifolds
We must be careful now. The curvature of space can change as we move from one point to another. It can 
change differently around every point and in different directions from the point. In a “flat” Euclidean space 
we calculate the net effect of two vectors by translating the origin of one to the end of the other. But in a 
general curved space, there is no direct way to do this, since the vector may change as the coordinates do. 
Instead, we require that a curved space be such that, for an infinitesimally small distance around a point, the
space behaves like an n-dimensional Euclidean space. Then we can translate by a succession of 
infinitesimal displacements. The totality of all these small regions constitutes a manifold.5 

A manifold must obey the following conditions:

• In the immediate neighborhood of a point, the space is flat, meaning the first derivative (but not 
necessarily the second) of a curve in the space with respect to displacement in any spatial direction 
must be zero.

• From one point to another point infinitesimally separated from it, the space is smooth, allowing us to 
calculate the value of a function from one point to the next. At the next point, although the same two 
requirements must be satisfied, the shape of the space and, so, the coordinates will have changed.

A tensor called the metric tensor may describe the distance between two neighboring points in a 
differentiable manifold. If the metric exists and is symmetric, the manifold is a Riemannian manifold. This is
the type of manifold used in GR.6

5 Schutz 2009, 142: “This is the way to think of a manifold: it is a space with coordinates, that locally looks Euclidean but that globally can
warp, bend, and do almost anything (as long as it stays continuous.)” On p 144, he adds: “The differentiable manifold itself is ’primitive’: 
an amorphous collection of points, arranged locally like the points of Euclidean space, but not having any distance relation or shape 
specified. Giving the metric g gives it a specific shape...”

6 I don’t know what the justification for this is, but it works.
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In order to pass from a vector or tensor field at one point P to the same field at an infinitesimal distance from
P, we must employ a mathematical device called a connection. In GR, this may be of different sorts.7 We 
will consider only the covariant derivative.

We can understand why we must use curved spaces by realizing that the surface of the Earth is such a 
space, in two dimensions. Measurement of the sum of the angles of a triangle on such a surface always 
gives a result greater than 180°, so the space is non-Euclidean. A saddle-shaped surface will give a sum of 
the angles of a triangle on the surface less than 180°. Also, only on a flat surface will a rectangular path, 
defined by four right angles end where it started. And the surface of a sphere is equal to 4π times the square
of its radius only in a flat, Euclidean space. So it is possible to measure the geometry of a space.

3.2. Tensors
A tensor is a geometric object which makes a linear map of other objects, vectors or one-forms or a mixture
(product) of the two, into a scalar. A tensor of type makes a linear mapping of n vectors into a scalar. A 

popular image shows something like a vending machine with n input slots for vectors: Put in the appropriate 
number of vectors and out pops a scalar! 

Similarly, a tensor of type does a linear mapping of m one-forms into a scalar.

We start with single-rank tensors, with a single index (set of components), and define vectors; denoted by 
one upper index, and one-forms (or dual vectors), denoted by one lower index.8 A one-form linearly maps 
a vector into a scalar and a vector linearly maps a one-form into a scalar (by a scalar product), so each is a 
tensor. The two are distinguished by the way they transform under a coordinate transformation, as follows in
the table.

 Vector         (1)

 One-form (or dual vector)                 (2)

Table 1: Vector and one-form transformation properties

We shall soon see that the transformation matrix for one-forms is the inverse of that for vectors.

One of the rules of tensor manipulation stipulates that a given index can exist only once or twice. If it exists 
twice, there must be one upper and one lower index and they are summed over. This is called the Einstein 
summation convention.

The set of all possible vectors at a point p in spacetime is called the tangent space at p and constitutes a 
vector space. Similarly, the space of all linear maps from the vector space at p to real numbers constitutes 
the dual vector space, also called the cotangent space.9 So the cotangent space is the space of all one-
forms at a point.10

3.2.1. Vectors, one-forms (dual vectors) and basis vectors

A vector may be represented as sums of components, coefficients of basis vectors  

             . (3)

Then, for the Lorentz transformation ,

7 In differential geometry or topology, one speaks of affine connections, of which a special case is the Levi-Civita connection, which in 
the case of manifolds reduces to the covariant derivative.

8 In days of yore, when I studied physics, vectors were called contravariant tensors and one-forms, covariant tensors.

9 Carroll (2013), 18.

10 The tangent and cotangent spaces can be the same vector space, the elements of which, vectors in another sense, can be multiplied 
by scalars and added together to form other members of the same vector space.
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and some creative diddling of summed indexes leads to the transformation rule for the basis vectors11:

            (4)

So basis vectors transform like one-forms.

A one-form maps a vector into a real number (scalar) and so can be represented as a scalar function of a 
vector:

 real number

A tilde over a letter is used to designate a one-form. The components of a one-form are the result of 
mapping of the basis vectors:

which leads to

and

so components of a one-form transform like basis vectors12. This inverse transformation leads to the frame 
invariance of

.

Analogously to   for vectors, one-forms are defined in terms of basis one-forms  by

and these formulae lead to the basis vectors and one-forms satisfying

so the th component of the th basis one-form is the Kronecker delta function. This equation may be 
taken as the definition of the relation between basis vectors and one-forms.

The tangent to a curve parametrized by  is a vector

            (5)

which undergoes a coordinate transformation as follows

like a vector should, hence its being written as  or .

The gradient of a scalar field  is

             (6)

which may be represented more generally as

and is a one-form. This is seen by using the product (Leibniz) rule, for instance,

11 Examples from Schutz, op. cit., 37.

12 These and following examples from Schutz, op. cit., 37-38.
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like a good one-form.

To note:

• A basis vector is tangent to a coordinate curve, along which only one coordinate changes.

• A basis one-form is the gradient of a coordinate surface, where one coordinate is constant.

• Since the bases change with the coordinates (unlike Cartesian coordinates), they are called 
coordinate bases. They are not orthonormal.

Since tensor equations are independent of the coordinates (of the bases), they are true in all coordinate 
systems if they are true in one. This of course is why they are useful in GR.

3.2.2. Of curves, surfaces and normals

A good example is the change of a scalar field along a path parametrized by a variable , the directional 
derivative:

              (7)

where  is a one-form, the gradient, mapping a vector, the tangent to the curve, into a scalar which 
represents the rate of change of  along the direction defined by the vector  . One can also say that a 
vector is a tangent to a curve and is the function which returns  when It takes  as an argument.13

Some (unfortunately for those with weak eyes) oft-seen notation:

            (8)

Don’t miss that comma in the last subscript.

A one-form is considered normal to a surface if it maps all vectors tangent to the surface to zero,

 

for all tangent vectors .

For a function f(x), assumed “well behaved”, the gradient

            

is the steepest slope at a point. An isosurface

            

defines a set of variables, a level set, of members on the surface. Then the gradient of the function at 
each point on the surface is normal to the surface. (Think of hills and contour lines.) Also,

            

is the directional derivative along .

3.2.3. Higher-rank tensors

Higher-rank tensors can be formed by outer products

            (9)

where . In general, a tensor  transforms like this:

.

13 Schutz, 122,
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The rank is the total number of one-forms and vectors concerned. As an example, consider two one-forms 
and . Then their outer product   is a rank two tensor of type . Operating on vectors  and  

gives

which we we call . The most general tensor can be represented as a sum of outer products. For 
our rank-2 tensor with components

,

we can define basis  tensors

and show that

.

3.3. The metric
In SR, the square of the invariant infinitesimal distance is given by

    (10)

which can be understood as a generalization of Pythagoras’s famous formula. This could be written as

(11)

where the metric  is a diagonal matrix with eigenvalues (-1,1,1,1)14 in Minkowski space. SR also defines 
the square of the proper time as

(12)

In GR, this is generalized to a metric  , which generally is not diagonal and has non-constant 
components. It may be written as a matrix or a rank 2 one-form. It has an inverse and may be used to raise 
or lower indices, as shown now and in Table (2).

In terms of tensors, the general metric tensor g is defined by the dot product of two vectors as

             (13)

which is symmetric by its definition. The metric is a tensor of type  and converts two vectors into a scalar.

Also,

              (14)

converts a single vector into a scalar and is therefore a one-form. So we can write

             

illustrating how the metric can be used to lower indices in a tensor equation. The opposite is also true. 
Notice that in SR, this amounts simply to changing the sign of the zero-th element.

Note that equation (13) defines the inner product of two vectors. In its simplest form in Cartesian coordinates
in Euclidean space,

(15)

it is clear how g inverts the sign of  on lowering its indices, so that the signature is what we expect, 
namely, -1,1,1,1.

In GR, the use of a metric is possible because we restrict ourselves to Riemannian manifolds.  In this case, 

14 Also known as the signature of the metric.
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the metric g exists and can also be used for raising and lowering of indices.

.

Metric

Inverse metric

Incremental distance and proper time

Lowering of vector index (map vector into one-form)

Raising of one-form index (map one-form into 
vector)

Table 2: Uses of the metric with tensors

3.4. The covariant derivative
In a curved space, any displacement takes us from one tangent space to another with different basis 
vectors. Changes in a vector’s components therefore have two sources: the vector field itself and changes in
the basis vectors, due to the curvature of space. We need to take the variation due to curvature into account
in any differentiation. Using differentiation by parts on

,

we get for the -th component

Defining

             (16)

meaning that  is the th component of  (its component along the  direction), we can diddle 

indexes a little to get the covariant derivative

            (17)

or, in yet another notation,

This can be understood as

covariant derivative = vector change + coordinate change.

We can show that

or

and use this plus some laborious index diddling to find the value of 

              (18)

Instead of equation (18), it is often easier just to use equation (16) to calculate the Christoffel symbols.
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The set of  are called connection symbols or Christoffel symbols15. They represent terms added to 
the ordinary partial derivatives in order to correct for the curvature of spacetime, thus allowing us to 
calculate the value of a tensor field at an infinitesimal distance from the current value. They “connect” the 
tangent spaces at the two points. They may be viewed as needed to represent the parallel transport of the 
later vector back to the origin of the first for comparison.

Note that even in flat, Euclidean space where the connection symbols are zero for Cartesian coordinates 
(x,y,z), this is not true for polar coordinates.

For a one-form, the covariant derivative is different by a sign:

.

One more, worse notation for the covariant derivative is to use a semi-colon:

            . (19)

Be sure to note the comma and the semi-colon. 

For higher rank tensors, to do a covariant derivative of a general tensor with respect to , , take
 and

for each upper index, , add a  sum over 

for each lower index, , subtract a  sum over .

So for rank-2 tensors, one gets:. 

which will be needed for deriving the Riemann curvature tensor.

In fact, all these results about covariant derivatives and connection symbols can be derived in two-
dimensional Euclidean space using polar coordinates, in which the basis vectors depend on position, as in 
curved space.16

3.5. Parallel transport17

In order to derive equations of motion, we must consider movement along paths in spacetime. Then we can 
derive a geodesic, an extremized path equivalent to a Euclidean straight line, the shortest distance between 
two points. A straight line is also the path which follows its own tangent. What interests us are vector and 
one-form fields, so we must consider the movement of such objects along a path.

In order to understand tensors in curved spacetime, we can start with vectors in Euclidean space. In order to
compare two such vectors, we move one from its own origin to the head or tail of another, keeping it parallel 
to itself, then add or subtract the two. Such movement of a vector is called parallel transport. This is 
expressed mathematically by requiring that the vector maintain its length and direction at all points, which 
can be expressed by 

,

where the curve followed by the vector is expressed as a function of a variable ,

.

15 Or sometimes, depending on the circumstances, Levi-Civita symbols. Or, because of their formula, X-awful symbols.

16 Schutz, 118-135.

17 I found the notion of parallel transport difficult to grasp. Thanks to the following video (https://www.youtube.com/watch?
v=p1tfZD2Bm0w&feature=youtu.be) and to Physics Forum (www.physicsforums.com/threads/understanding-parallel-transfer.911852/
#post-5743713 and https://www.physicsforums.com/threads/understanding-parallel-transport.915267/).
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In this case, parallel transport works because both points (in fact, all points) are in the same tangent space, 
the set of all possible vectors at a point in spacetime.

In GR, the curvature of spacetime prevents us from just adding or subtracting the field’s values at different 
places because the spacetime also changes. In another words, the tangent space at each point along the 
curve is different, so the vector moves from one tangent space to another. This fact is what led us to the 
covariant derivative.

Consider the 2-dimensional case in figure 1, where the vector is parallel transported around the triangle on 
the curved 2-d surface from A to B to N, such that it maintains its direction in the tangent plane to the 
surface at each point along the curve. As it moves around the curve, the tangent plane does not just tilt, it is 
a new tangent plane, the 2-d equivalent of a tangent space. The tangent plane at each point has a specific 
orientation. At the end of the circuit, the vector has returned to its original tangent plane, but no longer points
in the same direction. This is due to the curvature of the sphere’s surface along the path followed by the 
vector.

Figure 1: Parallel transport of a vector on a spherical surface, from Wikimedia Commons18

This shows clearly that there is no way to compare vectors in two different tangent spaces, so the idea of 
the relative velocity of, say, two galaxies has no meaning, since their velocity as we see it is not well 
defined. Expansion of the universe is better seen not as galaxies which are moving farther apart, but as 
change in the metric of the intervening space. 

There is a difficulty with Figure (1). We see that the 2-d tangent plane "tilts" in the extrinsic 3-d space in 
which we imagine it. But we are unable (most of us, at least) of visualizing a 3-d space in a 4-d one 
somehow "external" to it. We are stuck with the 3-d intrinsic space.

In order to parallel transport a vector in curved space, we will employ the usual trick: We will require two 
vectors at infinitesimally close points to be parallel and of equal length. We must take into account the 
curvature of spacetime by using the covariant derivative. By analogy with the Euclidean case, we will define 
parallel transport of the vector along the path as requiring that the covariant derivative of the vector along 
the path vanish. Mathematically, we define the directional covariant ( or intrinsic or absolute) derivative  
along the path as follows:

.

For parallel transport of the vector, we require the directional covariant derivative of the vector along its path 
to be zero, which leads to the equation of parallel transport:

.

Seen slightly differently, the derivative of a vector field along a path parametrized by  is

18 Parallel transport, https://commons.wikimedia.org/wiki/File:Parallel_Transport.svg.
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where  is the tangent to the path. So, using the covariant derivative, the condition for parallel transport of 
a vector becomes

            (20)

We need parallel transport because it will enable us to calculate a geodesic and identify the path followed by
an object (say, a particle) on a pseudo-Riemannian manifold.

3.6. Geodesics
In Euclidean geometry, the shortest path between two points is a straight line, which is a form of geodesic, 
the extremized distance between two points. What interests us is that that this is the path followed by a 
moving particle subject to no external forces. One can state this more precisely: In Euclidean geometry, a 
particle follows a path in which the tangent to the path at a point is parallel to the tangent at the preceding 
point. In other words, the particle parallel-transports its own tangent vector, which explains the reason for 
the preceding section.

We extend this idea into curved space by generalizing the statement that a geodesic is a path which 
parallel-transports its own tangent vector. Calling the tangent

and using parallel transport, we see that a geodesic is represented by the covariant directional derivative

            (21)

which is therefore called the geodesic equation. In this case,  is an example of an affine parameter, a 
parametrization of a curve “such that the parametric equations for the curve satisfy the geodesic equation.”19

3.7. The Riemann curvature tensor and friends
The Riemann curvature tensor is defined so as to measure the effect of curvature on a tensor which is 
parallel transported along different paths or along an infinitesimal loop. It is most easily derived by 
considering its definition in terms of non-commutating infinitesimal movements. We have seen in Figure 1 
how parallel transfer of a vector around a closed path in curved space can lead to a different vector. We can
consider an infinitesimal transport along a direction b, then along a direction c and compare this to the same
transports in the opposite direction. This may be done by considering the commutator of the two operations:

,

which defines the Riemann curvature tensor:

This can be calculated by using the equations at the end of section 3.4 and, taking  and  to be 
rank-2 tensors. After some creative fiddling with indexes, one finds

            . (22)

It is based on the connection coefficients, which are products of the metric and partial derivatives of the 
metric.20 So it’s all made up from the metric. The metric knows all.

For a vector,

            
and this can be generalized to any type of tensor.

19 Planetmath.org, http://planetmath.org/affineparameter.

20 Collier, 202, says “the Riemann curvature tensor, a glorious mixture of derivatives and products of connection coefficients.”
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Two other quantities used in GR are derived from the Riemann curvature tensor, the Ricci tensor and the 
Ricci scalar. The Ricci tensor is formed by contracting a pair of the Riemann tensor’s indexes, either the 
first and last or the first and third. The result is the same give or take a plus or minus sign. Taking the first 
and third,

            (23)

The Ricci scalar is the trace of the Ricci tensor.

            (24)

4. Back to physics
So the principle of covariance must take into account curvature and for this, all this math in the form of 
tensors is needed, because:

Tensor equations are independent of coordinates an so are the same in every reference frame.

Let’s do some physics.

4.1. Four-velocity and four-momentum21

The four-velocity  is defined to be a vector tangent to the world line of a particle, i.e., the path it follows 
through spacetime, and of length one unit of time in the particle’s rest frame. This is equivalent to its time 
basis vector . If the particle is accelerated, the four-velocity is defined in an inertial frame which 
momentarily has the same velocity as the particle, the momentarily co-moving reference frame, or 
MCRF.22 In any reference frame, it is the derivative of the components with respect to the proper time .

            (25)

and using the chain rule, we find

                     (26)

Four momentum is simply the particle’s four-velocity multiplied by its rest mass:

where for small velocity

            (27)

where c=1, as usual. Also,

so that

            (28)

4.2. The energy-momentum tensor
We know that gravity. i.e., the curvature of space, is brought about by energy and mass, which are 
equivalent in GR. So we must express mass and energy in the form of a tensor. Cosmologists do this by 
taking advantage of the Cosmological Principle, which states that on very large (humongous) scales, the 
universe is homogeneous and isotropic. The universe is considered to be a continuum composed of 
elements which can be treated as points each one of which possesses unique values for various properties 

21 A reminder of what was covered in my SR overview.

22 Schutz (2016), 41.

GR -- an overview 14 2019-11-29



such as energy and momentum. In other words, space is composed of fields, each of which has a value at 
each point.

As a simplest case, cosmologists define dust as a collection of particles which are all at rest in some 
Lorentz frame, their mutually co-moving reference frame. In the MCRF, dust particles have a density of 
particles, or number density, , which may vary from point to point. When they are moving relative to an 
observer, length contraction means that this observer sees a density . If the dust is moving with velocity

, then the flux across a surface of constant  is . We can thus construct the number-flux four-
vector  from the four-momentum  as

In its MCRF, the energy density of dust is the number density times the energy of each particle, which is m 
in this frame.

Seen from a moving frame, both n and m will change by a factor of , so that , This means the 
general energy density is not a vector, but a rank-2 tensor. 

The energy-momentum tensor (or stress-energy tensor) is defined such that its  component is the flux
(rate of flow) of the th component of four-momentum across a surface of constant .  We can write it in 
any frame and the simplest is the MCRF where for dust it has only one term:

which suggests generalization of the tensor to

            . (29)

Then

            , (30)

which makes it clear that T is a rank-2 tensor (a vector) and is symmetric, . Since the energy-
momentum tensor component  is the flux of  momentum across a surface of constant , we see that:

•  is the energy density;

•  is the energy flux across surface , e.g., heat conduction;

•  is the momentum density;

•  is the flux of momentum I across surface , called the stress.

It is straightforward to write out the components of the tensor using equation (30). For instance:

• ,

• .

• ,

•

A special case, somewhat more general than dust, is that of a perfect fluid , which is composed of 
elements which have no sliding forces (viscosity) between them, only pressure. It amounts to dust plus 
pressure, without heat conduction or or viscosity in the MCRF. In this case, the energy-momentum tensor in 
the MCRF, where , is diagonal and its (0,0) element has the same value as that of dust, . The 
spatial diagonal elements are momentum fluxes, i.e., changes in momentum per unit area, and changes in 
momentum are forces, according to Newton, who is correct in the MCRF. So the spatial diagonal elements 
all are equal to the pressure, p. In its generalized tensor form, then, the energy-momentum tensor for a 
perfect fluid is.

            ,

since  and  in the MCRF.
(31)
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4.3. Einstein’s gravitational field equations
Einstein spent almost ten years figuring out the equations of GR so that they would obey the three principles
of covariance, consistency and equivalence. The result can be written as

            (32)

where

            .

Look at the pieces:

•  is the Ricci tensor and  is the Ricci scalar; both are functions of the curvature of space via 
the connection coefficients and, therefore, of the metric;

•  is the metric and describes the distance between two points, a function of the curvature of 
space;

• G is Newton’s gravitational constant, which is where gravity comes in;

•  is the energy-momentum tensor expressed as a double one-form or tensor of type .

So the left-hand side represents the curvature of space expressed as a sum of functions of the metric; the 
right-hand side, the gravity associated with energy and momentum in space. The equation(s) therefore 
express the relation between curvature and energy-momentum.

If we include the (in)famous cosmological constant, we get:

            (33)

which can be rewritten as

            , (34)

where it is clear that the cosmological constant may be seen as contributing to the energy-momentum of 
space through the tensor

            .

In the MCRF, if we assume a perfect-fluid model for  as in equation (31), then from the matrix elements
[ , ], we can read off the values of the momentum and pressure due to the cosmological constant and 
find that

            . (35)

This shows that a positive density, , due to the cosmological constant gives a negative pressure, . 
The field equation can be split into parts due to matter (ordinary or dark) and the vacuum (the cosmological 
constant):

            . (36)

The vacuum (cosmological constant) part of the right-hand side has opposite sign to the energy-momentum 
tensor, so if the former is the source of gravitational attraction, the latter must be a source of repulsion, 
driving the universe to expand. This is the basis of the de Sitter model, discussed in paragraph 5.3.3. 

Physicists sometimes use the Einstein tensor, defined as

            

so that equation (32) becomes simpler:
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            .

As we shall see, it is possible to decompose the energy-momentum tensor further, into parts for matter, 
radiation and the vacuum (or cosmological constant, or dark energy).

Let’s resume: 

In GR, the connection and the metric are two conceptually different but not independent concepts. The 
connection allows us to take differentials on the manifold by taking into account the curvature of space-time. 
The metric is used to measure (infinitesimal) distances. Parallel transport of a vector along a closed curve 
and comparison of the difference between its initial and final states allows calculation of the Riemann tensor 
in terms of the connection coefficients, which can in turn be expressed in terms of derivatives of the metric. 
So the left side of Einstein's field equation of GR contains various derivatives of the metric and may be 
solved for the metric.

4.4. Consistency – the equations of motion
According to the principle of consistency, these equations must reduce to those of Newton in the appropriate
limit.

In an inertial frame where no gravity is present, where the connection coefficients are zero, the geodesic 
equation (21) reduces to

            

where the affine parameter  has been chosen to be the proper time . In the non-relativistic limit,  
becomes t, time, and the equation says that the acceleration is zero, consistent with Newton’s first law of 
motion.

The GR equivalent of Newton’s second law

            

is easily shown to be

            

and has the same form.

Newton's third law is complicated in GR. Usually, one assumes a large source of gravitation, say a star or a 
black hole, and considers the way a smaller particle moves along a geodesic in its gravitational field. 
Turning that around to consider the effect of the particle’s tiny mass on the black hole’s gravitational field is 
messy, and according to at least one authority, not addressed by Einstein’s GR. So that subject is clearly 
beyond the scope of this document.

Suffice it here to indicate that in a weak, static gravitational field, the force on a slowly moving particle can 
be shown to be equal to that of Newton’s equation in the form of Poisson’s equation

            

where  is the gravitational potential field.

5. What GR tells us
A general solution of the Einstein field equation is impossible. But several solutions have been found based 
on approximations or limiting cases. These are summarized in the following table.
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Model or metric Simplifying assumptions Elements Notes/validity

Schwarzschild Spherically symmetric, static 
gravitational field due to single 
massive spherical body in 
otherwise empty space

Schwarzschild radius Stars and black holes

Robertson-Walker Most general metric  conforming 
to cosmological principle

Scale factor R(t) and 
curvature k = -1, 0, or 1

Metric of Friedmann 
equations

Perfect fluid Dark matter and energy  =>  
means dark energy

Plugging R-W metric into Einstein’s field equation gives Friedmann equation(s), 
which lead in turn to several metrics.

Empty universe 
( )

Empty space Flat, static Minkowski space (k = 0) or negatively 
curved expanding universe (k = -1)

Static Einstein 
universe

Static solution because of 
inclusion of cosmological constant

R(t) = constant, k = +1, positive 
curvature, unstable

De Sitter universe Only dark energy Recent universe 
(>9.8 Gy)

Radiation-only k = 0, Early universe (0-
50 Ky)

Einstein-de Sitter 
universe

Mass only (dust) Mid-term universe; 
critical density  for 
k = 0

Table 3: Approximate solutions to Einstein gravitational field equations

5.1. The Schwarzschild metric, stars and black holes
The Schwarzschild metric is as follows:

            , (37)

where

            (38)

This metric assumes a spherically symmetric, static gravitational field due to a single massive spherical 
body in a vacuum. The object should not be rotating either, but the solution can still be used for a slowly 
rotating object, so it is good outside a star like the sun or outside a black hole. It ignores the field due to the 
mass of the observer, generally a test particle. Birkhoff’s theorem states that this is the only, unique 
solution for this case. The parameter M is the mass within the radius r and  need only be spherically 
symmetric. G is of course Newton’s gravitational constant. 

For very large values of r, the metric reduces to the metric for Minkowski space in polar coordinates. This is 
also true if there is no massive object, so that M=0. In fact, the variables r and t represent real radial 
distance and clock time only when M=0; otherwise, they are modified by the curvature of spacetime, what 
we have called coordinate variables (bases).
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Just for examples, the Schwarzschild radius RM measures about 9 mm for a body with the mass of the Earth
and 3 Km for that of the Sun, well within the boundary of each body.

The equation (37) indicates a real singularity at r=0, but the seeming singularity at r = 2GM, called the 
Schwarzschild radius, is a coordinate singularity, due only to the choice of coordinate system. It can be 
eliminated, e.g., by converting to so-called Kruskal coordinates,

            

            

for which the Schwarzschild metric  becomes

            

and nothing blows up at r=2Gm. It seems like cosmologists spend a lot of time searching for new 
coordinates which show up better the meaning of equations. Nevertheless, the Schwarzschild radius is 
defined as , remembering that we are using c=1, otherwise, that would be . 

If the proper distance, , is taken as the distance with time fixed, then

            ,

which for fixed r is

            ,

which is just the line element for a sphere in 3-dimensional Euclidean space. So for constant r and t, the 
Schwarzschild metric defines a sphere in Euclidean space. For fixed angles ( ), we have

            .

This can be shown somewhat intuitively by an embedding diagram, showing how the difference between
 and dr entails a curved space (Figure (2)).

5.1.1. Gravitational time dilation and redshift

Using the Schwarzschild metric, one can derive the relation between the proper time of an event viewed by 
a distant observer, say at a nearly infinite distance, and that viewed by an observer at the event.
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Figure 2: Embedding diagram of radial and proper
distance in Schwarzschild spacetime, after Collier



                      (39)

So to the distant observer, clocks will seem to run more slowly the closer they are to the earth’s surface, 
which may be paraphrased as “gravity makes time run slower.” This phenomenon of gravitational time 
dilation must be taken into account by GPS systems.

From the same equation (39), the frequency of light emitted by the owner of the clock in question will be 
seen by the distant observer as lower by

            

and so shifted towards the red (at least, if the emission frequency is higher than that of red, which is the 
case for most visible light). This is the gravitational redshift and has nothing to do with that of SR or a 
whatsoever velocity-related Doppler effect.

The geodesic equation of the Schwarzschild metric is messy to calculate. But once known, it can be used to 
predict both the the precession of the perihelion of Mercury, the experimental confirmation of which made 
Einstein world-famous, and the deflection of light in a gravitational field, leading to the phenomenon of 
gravitational lensing.

5.1.2. A bit of history

This is about as good a time as any for a bit of history.

In 1905, Einstein published the special theory of relativity (SR). In 1907, he started thinking about free fall 
and acceleration, finally presenting his theory of general relativity to the Prussian Academy of Science in 
November 1915. 

Karl Schwarzschild quickly found the metric named after him in December 1915, but unfortunately died of an
autoimmune disease in 1916 while serving on the Russian front.

In 1939, Robert Oppenheimer and one of his students, Hartland Snyder, used relativity to show that 
someone falling into a black hole was never seen by a distant observer to arrive at the event horizon, 
although the observer himself definitely did get there in a finite (and for her all-too-short) period of time.

The term “black hole” was first used by theoretical physicist John Wheeler in 1967.

5.1.3. Schwarzschild black holes

According to NASA, “[b]lack holes are really just the evolutionary end points of massive stars.”23 It is an 
understatement to say that black holes have a number of interesting properties.

The gravitational field of a black hole is so strong that anything – even light – which falls into it, i.e., which 
gets within a distance of the Schwarzschild radius of the central singularity, will be drawn toward the 
singularity without any possibility of escape, as to do so would require a velocitiy greater than the speed of 
light. So the Schwarzschild radius describes a surface of no return, the event horizon. Although the 
existence of the event horizon is a defining characteristic of black holes, it is not a rigid surface.  Outside the
event horizon, one could pass close to the black hole and then move away – if one calculates his orbit 
correctly. The black hole is not a cosmic vacuum cleaner, sucking up everything around it. But anything or 
anyone penetrating the event horizon is indeed doomed.

Since the black hole’s gravity keeps in everything which penetrates the event horizon, including light, the 
black hole is … black – and so invisible to observers. As light approaches it, a distant observer sees it as 
being increasingly gravitationally red-shifted until it also becomes black and disappears from view.

Interestingly, already near the end of the 18th century, John Michell and, slightly later, Pierre-Simon Laplace,
conjectured that light, considered at the time to be composed of particles, would be attracted by gravity and 
so could only escape from a a planet’s gravitational field if its speed, c, exceeded the escape velocity given 
by

23 NASA chat. “Why do black holes suck? Or do they?” https://www.nasa.gov/connect/chat/black_hole_chat.html.
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meaning that it could not escape if it were at a radius

which is the Schwarzschild radius. Neither of these men knew anything about black holes, but they 
theorized that very heavy stars would be dark because light could not escape from them. Laplace surmised 
that the largest objects in the universe might be invisible to us.

The gradient of the gravitational field within the event horizon is so strong that any poor astronaut who had 
the mishap of falling feet first “into” the hole, i.e., penetrating the event horizon, soon would feel a much 
stronger force on her feet than on her head so that, instants before before being torn apart, she would be 
stretched out, what cosmologists refer to jocularly as “spaghettification”. Such forces, due to the non-
uniformity a gravitational field are called tidal forces.

It is possible to find approximate solutions to the equations both for distant observers and for the poor in-
falling astronaut. Strangely enough, the distant observer of the doomed astronaut approaching the event 
horizon would “see” the astronaut’s time slow down due to gravitational time dilation. Every incremental 
distance of the falling astronaut would last longer, so that the observer would in fact never see the her fall in,
i.e. disappear. This is also true if it is not an astronaut falling in, but the surface of a compacting star in the 
process of forming a black hole. One cannot see a black hole form because there is not enough time. 

Incidentally, this is a good way to travel forward in time: Lurk for an hour or so close to a black hole event 
horizon, then go home to find centuries have gone by.

The unfortunate astronaut’s clock does not slow down, though, so she does indeed fall into the black hole, 
as does the surface of a collapsing star.

Stranger yet, the Schwarzschild metric (37) shows clearly that inside the event horizon, the dt term becomes
positive and the dr term, negative. In some sense, the coordinates of time and radial distance have been 
exchanged so that falling in distance has become falling in time and vice versa. Comprenne qui pourra.24

Cosmologists say that “black holes have no hair”, known as the no-hair theorem. This statement refers to 
the fact that black holes have only three properties which can be measured by an external observer: mass, 
angular momentum and electric charge. Cosmologists have found several metrics to describe black holes 
with combinations of these properties:

There are two classes of black holes in the visible universe: 

• huge quasars and active galactic nuclei (or AGN, possessing a compact, luminous core) whose 
masses are between 106 and 109 solar masses, and

• microquasars and stellar-mass black holes, whose masses are on the order of 10 solar masses.

Note that these classes are based on mass, not size. The energy observed is outside the event horizon, as 
explained below.

Quasars are thought to start out relatively small and grow by absorbing nearby stars. Active black holes are 
the most powerful continuous energy sources in the universe. It is thought that there Is a quasar-class black 
hole in the center of each galaxy, including our own, the Milky Way. Stars near the center are moving so fast
that their motion can only be explained as being due to a black hole.25

A non-rotating black hole is spherical, but a rotating one will bulge out at its equator. The Kerr metric for a 
rotating black hole defines a region called the ergosphere where spacetime is dragged in the direction of 
rotation at a speed greater than the speed of light relative to the rest of the universe. This is due to an effect 
called the gravitomagnetism. It is so named by analogy with the Lorentz force of electromagnetism 
because in the presence of such a field, the gravitational acceleration of a particle depends on its velocity.26

24 Let he who can understand do so.

25 NASA chat. “Why do black holes suck? Or do they?” https://www.nasa.gov/connect/chat/black_hole_chat.html

26 Schuts (2003), 245.
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Metric Properties taken into account

Schwarzschild Only mass

Kerr Mass and angular momentum

Reissner-Nordström Mass and electric charge

Kerr-Newmann Mass, angular momentum and electric charge

Table 4: Black-hole metrics

As matter possessing angular momentum is attracted toward a black hole, it goes off to the side a bit and 
follows a path around the hole, Such matter forms a flat disk around the black hole, an accretion disk. 
Somehow, such matter loses angular momentum and spirals into the black hole, releasing its energy as 
heat and radiation, mainly X-rays. The radiation follows paths curved by the black hole’s gravity. 
Observation of this radiation has identified many possible black holes.

Figure 3: Jets from super-massive black hole in the center of the  4C+29.30 galaxy, from NASA.27

Streams of matter also emerge in narrow jets with opening angles of <5°, thought to be emitted 
perpendicularly to the plane of the accretion disk and in both directions. Jets may be due to magnetic fields 
produced by the rotating disk and are an important subject of black-hole studies.28

It is predicted that black holes also possess a finite temperature and entropy. If this were true, black holes 
would not be completely black. QM indeterminacy would form matter-antimatter pairs near the surface, 
using energy from the black hole itself. If one member of such a pair is closer and falls into the black hole, 
the other may escape, carrying off some of the energy. This is called Hawking radiation, after its 
discoverer. If this happens, then black holes may eventually decrease in mass until they “fade” away over a 
very long period of time, the rate of Hawking radiation being tiny.29 The effects of entropy and information in 
the case of black holes are widely debated, partly because there is no way to test the theories, the 
singularity in the center of the black hole being unattainable.30

5.2. The cosmological principle 
Cosmologists have taken advantage of the cosmological principle to look for a metric describing a 
spacetime which is homogeneous and isotropic.

27 Black-hole powered jets plow into galaxy. https://www.nasa.gov/multimedia/imagegallery/image_feature_2510.html

28 For more on accretion disks and jets, see Abramowicz and Fragile, “Foundations of black hole accretion disk theory”, online at 
https://arxiv.org/pdf/1104.5499.pdf.

29 Can you imagine something black fading?

30 See, for instance, Sabine Hossenfelder, “Why do physicists worry so much about the black hole information paradox?”. 
http://backreaction.blogspot.fr/2017/04/dear-dr-b-why-do-physicist-worry-so.html
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5.2.1. Robertson-Walker metric

The most fruitful method so far has been to idealize the case as follows. Spacetime evolves in time so that 
at each value of time it consists of a hypersurface which is homogeneous and isotropic. This assumption 
leads to the Robertson-Walker metric, the most general possible metric which describes such a 
spacetime. It can be written as follows:

            (40)

where

            
The coordinates of this metric are rather special. The time coordinate t represents the cosmic time, i.e., 
time measured by an observer whose motion is only due to the expansion of space, called a fundamental 
observer, and whose peculiar motion is zero. This would be the time seen by a galaxy, for example. The 
spatial coordinates, called co-moving coordinates, are measured by a fundamental observer and are 
constant with time, all time dependence being found in the scale factor, R(t), which shows how big the 
space part is as it increases (decreases) with time for an expanding (contracting) universe. To repeat, the 
spatial coordinates do not change with time: Each galaxy has a fixed set of spatial coordinates which lead to
a temporally increasing metric only because of the scale factor. The parameter k is the curvature and is 
considered (i.e.,normalized) to take on the values -1, 0 or +1. Any other integer can be reduced to one of 
these three by judicious normalization of the coordinate r,

The three permitted values of curvature lead to different types of universes:

• In the case of k=0, this reduces to flat Euclidean space. 

• For k=+1. It can be reduced to the metric for the surface of a three-sphere and is called the closed, 
or spherical R-W metric. 

• For k=-1, it gives a hyperbolic, or open, R-W metric.

5.2.2. The expanding universe

Consider only the radial part of the distance at a fixed time,

            .

This can be integrated for the three cases and, after some manipulation, all three give the same result:

            (41)

where H(t) is the Hubble parameter. Since the time derivative is a radial velocity, we get for t=0 (i.e., now)

            

which is Hubble’s law, telling us that the farther distant (d) a star, the faster it is receding from us – and 
from everything else. Among other things, this says that galaxies or stars farther than  are 
receding from us faster than the speed of light. Not to worry, this is because of space expanding, nothing is 
traveling at superliminal speed in anybody’s Lorentz rest frame.

5.2.3. The Friedmann equations

Using a metric to calculate connection coefficients and then pushing all that into the various tensors is 
tedious, to say the least. So many cosmologists start with a predigested version of those results. The R-W 
metric can be used to calculate the connection coefficients, then the Riemann curvature tensor and the 
quantities derived from it, the Ricci tensor and scalar. Putting these and the perfect-fluid energy-momentum 
tensor into the Einstein equation (32) leads eventually to the Friedmann equations. The first, called the 
Friedmann equation, is
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            (42)

and the second, the Friedmann acceleration equation, is:

            (43)

The sum  on the right-hand side of this equation is referred to as the active gravitational mass.31 

Breaking down the energy density  into its three components, we can determine their evolution as following
this equation

            . (44)

So, defining a normalized scale factor

            (45)

allows the Friedmann equation to be written in another much-seen form:

            (46)

or

            . (47)

Similarly, if we assume pressure follows an equation of statement

(w = 0,  1/3 or -1 in the case of dust, radiation or dark energy, respectively), then we can find the evolution of
the pressure with time

(48)

5.3. Other models of the universe
The following models of the universe are all calculated using the Friedmann equations and therefore are 
based on the R-W metric and the energy-momentum tensor for a perfect-fluid.

5.3.1. Empty-universe model

The simplest case is a completely empty universe:

            

in which case the Friedmann equation becomes

            

or

            ,

so k must be equal to 0 or -1. If k=0, the result is R constant and we have a very boring, empty, unchanging 
space. Taking k=-1, integrating and dropping the constant factor gives  (  if ). In 

31 Schutz (2003), 242. Schutz says it is responsible for the gravitational redshift  and the gravitoelectric field, that “part of the gravitational 
field that is most like the Newtonian gravitational acceleration.
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terms of the above normalized scale factor,

            .

So an empty universe either remains static and empty or increases linearly with time.

5.3.2. Static Einstein model

Einstein did not like the idea of an expanding space and so finagled his equation to give a static one, adding
in the cosmological constant, . Beginning with that version of the Einstein equation (33), the Friedmann 
equations can be rederived to give

            

and

            .

In these equations, the vacuum energy is included in the  term, so  only. The universe can 
only be static if the pressure p=0 and

            .

The second equation above then says that

            ,

so 

            

in agreement with equation (35). Adding these conditions to the first Friedmann equation above,

            ,

or

            

so k must be positive and is taken to be k=+1 and the curvature of the static universe is positive. The 
problem with this solution, as Einstein realized, is that it is extremely unstable and therefore unlikely to be 
true.

Incidentally, equation (35) gives the equivalence between  and , from which the first equation here may 
be written as

            

which is equivalent to the original Friedmann equation, now including  instead of  itself.. This is how the 
cosmological constant leads to a static universe, by providing the effective energy density needed to combat
expansion.

So it seems clear that neither of these two examples, the empty universe or the static one, are very useful 
descriptions of our universe.

5.3.3. De Sitter model

The de Sitter universe goes a step beyond the empty universe by adding vacuum energy only, leaving
 as well as k=0. The Friedmann equation (42) then gives
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which can be resolved somewhat laboriously to give

            .

In this case the Hubble parameter is

            

so that

            .

Because of the small size of the Hubble constant (2.27x10-18s-1), this exponential curve is barely 
distinguishable from the t axis, but the universe is inexorably expanding. The expansion is entirely due to the
positive cosmological constant.

5.3.4. Radiation-only model

As its name implies, this model assumes the initial matter energy density and the vacuum energy are zero, 
as well as k: . The Friedmann equation (42) and (44) gives

(49)

This can be solved to give

            

or equivalently

            .

5.3.5. Einstein-de Sitter model

This model assumes , in other words, a universe of nothing but matter, assumed to 
behave like dust. So, one more time, the Friedmann equation (42) gives:

            ,

which describes an increasing scale factor, R(t), whose rate of increase decreases in time. After some time 
and labor, the equation renders

            

or equivalently

            .

So this model describes a universe which expands forever, but at a continually decreasing rate, as seen 
from equation (49). This was considered the best model until the late 1990s and the discovery that the 
expansion is increasing.
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5.3.6. Different contributions to density and pressure

We can take the method of equation (36) farther and decompose the the energy-momentum tensor into 
three parts due to three different energy densities, for matter, radiation and vacuum energy (the 
cosmological constant):

            (50)

where the last term indicates that the vacuum energy density is a constant across spacetime. As the energy 
scale factor increases, the matter and radiation energy densities decrease by a volume factor of R3. In 
addition, since the energy of radiation is inversely proportional to its wavelength, which will increase with R, 
its density goes down by a further factor of R.   One can show that the total energy density evolves as32

             (51)

and the pressure evolves as

            ,

where we assume that matter is in the form of dust and we give or take a few factors of c (=1).

These two equation show how the three forms of energy density and pressure vary with the expansion of 
the universe. Radiation energy density decreases faster than matter energy density, but both decrease 
faster than the vacuum energy density, which does not decrease at all. So consideration of these relative 
energy densities suggests that the universe has been through three periods33:

1. an initial, short period of radiation dominance, estimated to measure on the order of 50,000 years, 
approximated by the radiation-only model;

2. a longer period of matter dominance, estimated as lasting about 9.8x109 years, best represented by 
the Einstein-de Sitter model (EdS);

3. a long period of dominance of vacuum energy, still running, approximated by the de Sitter model.

Equation (48) implies that similar considerations hold for radiation and vacuum pressure, with radiation 
pressure decreasing rapidly from its initial value.

5.4. More on densities
The Friedmann equation can be written in terms of the Hubble parameter defined in equation (41) as 
follows:

            (52)

where  represents the sum of all three energy densities. There are three cases to consider according to the
values of k.

1. If the space is flat, then k=0 and 

            

where  is the critical density necessary for a flat space.

2. If , then equation (52) shows that k must be negative and therefore k=-1, so the curvature of 
space is negative. It also shows that R(t) will go on increasing forever.

3. If , then k=1. In the context of the Einstein-de Sitter model, where , we have seen 
that , as a density, goes down as R3, so that eventually H2(t) will become zero and the universe 

32 See Collier, 300.

33 Figures taken from Collier, 316.
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will collapse.34

Figure 4: Effect of densities on expansion of space, by Durand via Wikimedia Commons35.

Cosmologists also employ another set of density parameters based on the ratio of each energy density to 
the critical density

            

for x = m, r or . The total density is the sum of the three

            . (53)

Inserted into the Friedmann equation, this gives

            .

So we have the following correspondences:

            

            

            .

If one assumes no radiation and  (k=1), one can use the Friedmann equation to 
calculate the age of the universe to be 13.78 Gy, which is damn close to the WMAP determination of

 Gy.36

5.5. Gravitational waves
Beyond this document. They should exist but be very weak. LIGO and VIRGO have found them.
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7. Annex: All you need to solve Einstein’s equations
Start with the equation itself, cosmological constant and all, equation (33):

            .

Next, we need the Ricci tensor and scalar, from equations (23) and (24):

            

           

and that requires the Riemann curvature tensor’s, from equation (22):

            

We also need the Christoffel or connection symbols, from equation (18):

            

Now all you need is a metric, g, and an energy-momentum tensor (make it easy on yourself and use the 
perfect-fluid version) and you’re ready to go! 
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