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1. Introduction – Hilbert spaces
It is often said that math is the language of physics. This is true, but math alone is not enough. We also require a 
way to understand what the math means, what its symbols correspond to in the physical world.

Tiny nutshell version: Quantum mechanics (henceforth QM) is composed of 

• basic physical concepts (particles, waves, energy, etc.);

• a mathematical formalism defining objects and rules for their manipulation; and 

• a set of rules for identifying the correspondences between physical entities and the mathematical 
objects. 

Only when we possess and understand these tools are we able to draw conclusions based on the theory and 
devise experiments to test them. The same things can be said of classical physics, but QM is much more 
abstract, as well as often being little intuitive. 

The math of QM considers the world to be made up of objects or groups of objects, each of which is referred to 
as a system in a certain state. Each state is associated with a set of properties given by dynamical variables. 
The mathematical objects representing the states are linear vectors (or rays). The space of variables wherein 
states of a physical system exist is a mathematical Hilbert space, an abstract construction of a type of space 
called a vector space, which we will consider in section 3. A Hilbert space is a complete vector space 
possessing the structure of an inner product. The dimension of the space depends on the structure of the 
physical system under study and is often infinite. The rules for manipulation of these vectors are the subject of 
linear algebra, on which QM depends for manipulating vectors in Hilbert space.

Hilbert spaces are abstract, they only exist in mathematicians’ imagination, not in the physical world. (At least, 
that’s my take.) We can manipulate them with the well-defined mathematical methods of linear algebra, just as 
we can abstractly prove theorems of plane geometry without actually ever measuring a triangle with a ruler or 
extending straight lines to see if they intersect. But we could draw a triangle on a piece of paper and measure it. 
In order to do calculations based on vectors and operations in Hilbert space, we must do something analogous. 
We use a representation of the state vector, an instantiation of the abstract space in terms of something more 
concrete, something we can measure, although often indirectly, through its effects on something else (an 
indicator). A representation is expressed in terms of a certain set of basis vectors, The most common QM 
representations use coordinates or momenta as bases.

Variables are expressed as operators on the states. Operators transform the state somehow, into another state 
or the same state multiplied by a generally complex number. In the latter case, the vector is said to be an 
eigenvector and the complex multiplier the eigenvalue of the operator. We will be interested mainly in so-called 
Hermitian operators (defined later) which always have real eigenvalues.

Notice that no mention has been made yet about what is observed or measured – an electron, an EM field or a 
cat – nor any of its properties. That comes in with the definition and interpretation of the state vector. The math of 
QM says how to manipulate states, not how to define them. Only when we impose the constraints of certain fairly 
obvious symmetric transformations will we be able to understand what some of the operators represent in terms 
of physical quantities. Symmetries are of great importance in modern physics.

A physical entity under study can exist in different states and of course it is interesting to be able to predict how 
those states change when forces, or equivalently, potential energy fields, are applied -- or simply under the 
passage of time. Such changes of state due to forces or time are expressed mathematically by an equation, the 
Schrödinger equation. 

We will discuss only non-relativistic QM (NRQM). In other words, we ignore Lorentz invariance and consider only 
Galilean symmetries. Relativistic QM (RQM) exists also, being better known as quantum field theory (QFT).

But one thing at a time.
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2. Quick reviews
We will be using lots of Lagrangian and Hamiltonian theory. It’s good to  know a bit of group theory.

2.1.Action, the Lagrangian and the Euler-Lagrange equations
QM needs a method of attacking mechanics problems not through coordinates, but through energies. These 
ideas were developed during the mid-eighteenth century, principally by Euler and Lagrange.

The action is defined as

where the Lagrangian is most simply (at least in classical physics) defined as

,

the difference of the kinetic and potential energies of the system in question. The principle of stationary (often, 
least) action then says:

,

which leads through use of incremental differences and the product rule to the Euler-Lagrange equation

, (2.1)

 being a coordinate direction in the Hilbert space. The canonical momentum is defined by

(2.2)

which, along with the Euler-Lagrange equation, gives

. (2.3)

Very Important Result: If the Lagrangian is invariant under translations, i.e., independent of , canonical 
momentum does not change over time; it is conserved. 

2.2.Energy and the Hamiltonian
The next step in the use of energy was taken by William Rowan Hamilton around 1830. 

A different way of approaching the subject is to define the Hamiltonian as a (negative) Legendre transform of 
the Lagrangian

. (2.4)

Then we have

. (2.5)

So  varies in time only if the Lagrangian has a specific time dependence. Equivalently, if a system (Lagrangian) 
is invariant under time translation, then H is conserved.
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 In the simple case where the Lagrangian is

, (2.6)

with canonical momentum , the Hamiltonian is

, (2.7)

the total energy, the sum of the kinetic and potential energies. Although this equation is only true if the 
Lagrangian has this simple form, the Hamiltonian is always the energy. It is also the basis for the Hamiltonian 
formulation of mechanics – and, especially – non-relativistic quantum mechanics. Equation (2.5) tells us that if a 
system (represented by its Lagrangian) is invariant under time translation, energy is conserved.

The Hamiltonian is generally taken in relation to phase space of positions and momenta and is given by

(2.8)

for a single particle in potential energy . Then Newton’s second law  may be expressed 
as

(2.9)

and

. (2.10)

These two are Hamilton's equations. They can be derived more rigorously, without supposing the simple form 
(2.8) for the Hamiltonian, by expanding equation (2.4) to

.

By the definition of the canonical momentum, equation (2.2), the first and last terms cancel. Comparing the result 
to a standard derivative

and using equation (2.3) leads to Hamilton’s equations. 

2.3.A brief foray into group theory
A group is a collection of objects and an operation such that the collection is complete (closed) when the 
operation acts on the objects. Operating on objects leads to other objects in the group. It must also be 
associative, and possess both an identity and an inverse.

Physicists employ Lie groups, a Lie group being a continuous transformation group. Its elements may be 
transformations such as rotations or translations but not reflections, as these are not continuous. Such groups 
are abstract mathematical entities, but they may be instantiated for study in representations with an arbitrary 
number of dimensions. Since the Lie group and therefore the representation are continuous, the latter can be 
generated incrementally from the identity operator by using operators called generators. The generators 
therefore are derivatives of Lie group elements in a representation and form a vector space called a Lie algebra. 
The generators are especially interesting to physicists because they represent physical observables such as 
energy or linear or angular momentum. They thereby provide links between transformations and observables, 
allowing us to describe changes in the physical systems under study. In this way, we can deduce properties of 
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the world around us from properties of mathematical groups. 

Several variables and quantities are associated with Lie groups and their representations. The number of 
parameters of the group, called its order, is fundamental and Is constant across all representations of the group. 

The order of an SU(n) group is , 8 for SU(3) or 3 for SU(2); of an SO(n) group , 3 for SO(2).

The subset of the the generators which commute with each other and are mutually diagonalizable (defined later) 
are the Cartan generators. Their number, called the rank of the group, is also constant over all representations.

The eigenvectors of the Cartan generators span the space of a representation and therefore are of the same 
dimension as the representation. The eigenvalues can be used to label the corresponding states. Casimir 
operators commute with every generator and may be used to label representations.

In brief (finally!),

• group: order = dimension = number of parameters, constant across all representations;

• representation = arbitrary dimension, but number of generators = order, so constant;

• Cartan (number = rank) and Casimir operators each in constant number across all representations.

2.4.Translation and canonical momentum
An important example of transformation symmetry is translation. The translation operator  has the following 
action on a state vector, represented by a Dirac ket :

, (2.11)

which for an infinitesimal translation  is expressed in terms of its generator  by

. (2.12)

We will consider this to be the definition of this operator , which we have not yet identified, although we know it 
from many sources (and will study in section 5) to be the operator for the momentum in the x direction. Then a 
finite translation through  can be found by doing an infinite number of infinitesimal operations, to get

. (2.13)

Going into the position basis (coordinate representation; more later on that) and using (2.11) and (2.12) plus a 
Taylor expansion of  leads to1

,

identifying the coordinate-representation momentum operator as

or . (2.14)

The canonical momentum thus is identified as the generator of translations In a system of constant or zero 
potential and is identified in the coordinate representation by (2.14).

3. Vector spaces, eigenvectors and all that
To partially repeat what was said in the introduction, in QM, the space wherein states of a physical system exist 
is a mathematical Hilbert space, an abstract construction of a type of space called a vector space. A Hilbert 
space is a complete vector space possessing the structure of an inner product.2 It may have any number of 
dimensions, often an infinite number. The dimension of the space depends on the structure of the physical 

1 Townsend, 157.
2 Or, a Hilbert space is an inner-product space which is complete. Jeevanjee, 37.
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system under study.

A linear vector space must obey a number of rules. The sum of any two vectors is a vector, and addition is 
commutative and associative. There exists a zero vector and, for every vector, an inverse vector. The product of a 
scalar and a vector is a vector and therefore so is a linear combination of vectors, a sum of such products. 
Scalar addition is associative and scalar multiplication is distributive and associative. 

A vector is linearly independent of a set of vectors if it can not be represented as a linear combination of 
vectors in the set. Each vector in a set of linearly independent vectors is independent of all the other members of 
the set. If every vector in the space can be expressed as a linear combination of vectors in the set, the set Is said 
to be complete and to span the state. Such a set of linearly independent vectors which span the space is called 
a basis. (Think of  or   in 3d Euclidean space.) Since they are linearly independent their number is 
minimal and is in fact the dimension of the space.

In physics, the basis vectors of such a state may be discrete or continuous. In the latter case, we are interested 
in functions which are square-integrable over a specified interval, a to b, a space mathematicians call L2([a,b]).3

Vectors need not be intervals or little arrows in the vector space. As soon as a set of functions obeys the above 
requirements for a vector space, it may be considered a set of vectors. This is true for the functions of physics.

The state of a system is then represented by its state vector, a unit (normalized) vector in the vector space of 
states. A physical observable is described by a linear operator. An operator effects some change on the state 
vector, even if it is just to multiply it by a number. Not all operators represent observables.

Using Dirac's bra-ket notation, a state vector is a ket represented by . A bra  is a member of the dual 
space of complex conjugates of the bras, used to form inner or outer products, (3.1) or (4.18). 

Like good vectors in any Hilbert space, bras and kets can form an inner product denoted by

,  with  (3.1)

being its inverted complex conjugate. The Dirac notation is conveniently the same whether the basis be discrete 
or continuous. In the discrete case, a ket vector may be represented as a sum of basis vectors, in which case

  and 

for complex  and , assuming the  are orthonormal basis vectors. Then the inner product is given by

.

The important operators in QM are Hermitian operators. The Hermitian conjugate  of a linear operator 
(transformation)  is defined by

(3.2)

which in discrete matrix form is the complex conjugate of the transposed (inverted) matrix 

.

A Hermitian operator is equal to its Hermitian conjugate

so by (3.2) . (3.3)

When an observable is continuous, say x, the state is itself a function of continuous variables. The bra  
corresponding to a ket  represented by the function  is the complex conjugate . In these 
equations, is a complex-valued function of an independent real variable x. Then

3 Jeevanjee, 14.
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 → 

and the inner product is defined by

.

Normalization of probability then requires that

.

Although this integral may be infinite (and so not normalizable), it may nevertheless be useful over a limited 
range (a,b) of x, so the space is still L2([a,b]).  This means integrating from a to b rather than from  to  in 
the above equation.

The   -  component of an operator T is

.

If an operator M acting on a vector  just multiplies it by some value

, (3.4)

then  is an eigenvalue of  and  is the corresponding eigenvector. 

In the discrete case, it is often convenient to represent the bra and the ket as matrices. So rather than looking at 
all of linear algebra, let’s warm up by taking a look at those. Remember, it’s all about state vectors and operators 
for variables.

EXAMPLE. As an example which will illustrate some of the techniques for dealing with these beasts, consider the 
following operator matrix.4

. (3.5)

One can equally well represent the eigen-equation (3.4) by . In order to calculate the 
eigenvalues of the observable represented by this matrix, we calculate the characteristic equation (or 
characteristic polynomial), which is obtained from the determinant

.

This equation has  in every term, so obviously 0 is one root. It’s easy to see that 1 is another and only slightly 
trickier to see that i is the third. Notice that if we take the negative of the characteristic equation, then it can be 
factored in such a way as to make clear the eigenvalues.

.

We have three eigenvalues and therefore three corresponding eigenvectors:

, for . (3.6)

For  and eigenvalue  , assuming a column eigenvector  this gives three equations 

4 Example borrowed from Griffths & Schroeder, 476-479.
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, , .

Clearly, , but neither is completely determined. So let’s take , which means  and 
the 1st eigenvector is 

, for eigenvalue 0. (3.7)

Note that the arbitrary choice of  just imposed a multiplicative factor on the eigenvector, which amounts to 
a phase and has no importance for observables, which depend on the absolute square of the eigenvector 
(section 4.1). Similarly, we can find the other two eigenvectors (again, each one up to a phase factor)

and , (3.8)

for eigenvalues 1 and i, respectively. 

In this example, the eigenvectors span the space, so we can use them as a basis. Imagine basis vectors 
, then  and 

is diagonal

, (3.9)

with normalized eigenvectors

,     and . (3.10)

Since matrix (3.9) is diagonal, the operator matrix M is said to be diagonalizable. Very Important Point: The 
diagonalization is possible if and only if its eigenvectors span the space.5

A unitary transformation is one whose inverse is equal to its Hermitian conjugate, so that

and . (3.11)

If we transform a state vector by such a unitary transformation

, (3.12)

then the operators for observables must also transform, so if

, then .

The second equation says

so

and the observable operator transforms as

. (3.13)

Two such matrices as  and  related by a for a non-singular matrix , are said to be similar matrices.6 

5 It is this requirement which leads Ballentine to consider rigged Hilbert spaces for the state vectors.
6 Griffiths and Schroeder, 474.
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Similar matrices have two interesting properties: Their determinants are the same, as are their traces, as can be 
confirmed in the example by comparing (3.5) and (3.9). Equation (3.13) tells us that matrices which represent the 
same linear transformation in different bases are similar. Transformation of an operator matrix into a similar, 
diagonal matrix is possible (if and) only if its eigenvectors span the space and form a complete set. 

We can do the diagonalization another way. The similarity matrix to do the job can be constructed from the 
eigenvectors in the original basis:

(3.14)

In our case this gives

. (3.15)

In fact, this amounts to using the original column eigenvectors from (3.7) and (3.8) as columns in the operator 
matrix. The inverse of a matrix with non-zero determinant is given by7

, (3.16)

where  is the inverse of the cofactor matrix, whose ijth element is  times the submatrix obtained by 
ignoring the ith row and jth column. With much sweat and pencil usage8, we can calculate the inverse of this 
inverse as

. (3.17)

Using this, it really is straightforward to show that

of (3.10). 

But… As is clear from (3.16), the existence of an inverse to a matrix depends on its having a non-zero 
determinate. Remember that similar (in the math sense) matrices have identical determinants, which is handy. 
And, as already stated, transformation of an operator matrix into a similar, diagonal matrix is possible if and only 
if its eigenvectors span the space, i.e.. if they form a complete set. More coming...

4. QM basics
I will try to present a simplified consensus based on five sources, given in the bibliography: Ballentine, Griffiths 
and Schroeder, Sakurai and Napolitano, Susskind, and the Physics Forums web site.

4.1.Basic principles
Principle 1. A pure state of a quantum system is described by a vector  in Hilbert space.

(An alternative formulation defines the state as an operator rather than a vector. See below, section 4.3.)

Principle 2. A physical observable is represented by a Hermitian operator on a state vector.9 The possible 

7 Griffiths & Schroeder, 472. 
8 My notes J-III, 27, 
9 Physics forums, 7 rules. Equivalently,  is self-adjoint. According to Ballentine, a self-adjoint operator is a Hermitian 

operator whose domain is the same as that of its Hermitian conjugate. He’s most liekly thinking in terms of ensembles of 
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results of measurements of the observable are the eigenvalues of the Hermitian operator representing the 
observable, as in (3.4). There may be multiple eigenstates, in which case the set of eigenvalues is called the 
spectrum of the operator. Then the possible values of a measurement of an observable are said to be the 
spectral values of the corresponding operator .

The operator’s being Hermitian has several consequences. 

• The eigenvalues of a Hermitian operator are real. 

• Eigenvectors corresponding to distinguishable eigenvalues of a Hermitian operator must be orthogonal. 
(These two properties, reality of eigenvalues and orthogonality of eigenvectors, constitute Sakurai’s 
Theorem 1.10)

• In the case of discrete eigenvalues, the eigenvectors of an operator form a complete set and so span 
the space of the representation. This means that any vector in the space can be represented as a 
weighted linear sum of eigenvectors. They can be chosen so as to form an orthonormal basis of the 
space.

In the case of continuous (or an infinite number) of eigenvalues/eigenvectors, this becomes problematic. One 
solution is to extend the notion of Hilbert space to so-called rigged Hilbert space,11 but we won’t go there.12

Assuming the eigenvectors of an operator form a complete set, an arbitrary vector  can be expressed as a 
linear sum, or superposition, of eigenvectors

, (4.1)

where , so the complex coefficients are inner products

. (4.2)

Therefore 

, and , (4.3)

the identity operator. This equation is the completeness relation and expresses closure. We will use it a lot in 
the following pages.

A state which is not pure also may look like equation (4.1) or even something more complicated. We then say it is 
in a mixed state.

The set of inner-product coefficients  of (4.2) constitutes the wave function of the system in the basis defined 
by the set of observables .13 The wave function is the projection of the state vector onto the eigenvectors of the 
representation, as (4.2) is the projection of state  onto the direction . You could consider the set of wave 
functions to be the coordinates of the state vector in the basis defined by the eigenvectors.

More generally, if a basis of orthonormal state vectors is represented by  for eigenvalues (a,b,c,...), 
then any state vector may be expanded as

(4.4)

where the set of coefficients  is called the wave function of the system in the basis defined by the 

events.
10 Sakurai and Napolitano, 16.
11 Ballentine does, 27-28.
12 Leonard Susskind just states completeness as an axiom and Sakurai, 12, assumes it at the outset.
13 Susskind and Friedman, QM, 134. Some authors confuse wave function and state vector. Grifffiths, 114, restricts the 

definition to the position representation.
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observables, A, B, C, ….14 We can expand in terms of another set of basis vectors corresponding to different 
observables and the wave function set will be different even though they describe the same system state. The 
two sets of basis vectors correspond to different representations of the system, for the two different 
observables. We will return to this subject in section 6.2.

The number of eigenvectors in the basis is the dimension of the Hilbert space, or at least that part of it 
corresponding to this observable. (Think of a fermion’s angular momentum in 3-d space and its spin, in 2-d 
spinor space.) So the dimension of the state is greater than or equal to the number of eigenvalues. If the 
eigenvalues are continuous, the dimension is infinite and this may apply to many or all observables.

Two or more orthogonal eigenvectors may have the same eigenvalue, in which case they are referred to as 
degenerate states. Even then, it is possible to construct a set of orthonormal basis vectors.

In case of degenerate subspaces, let  be a complete set of (generalized) eigenvectors of , indexed by 
, where more than one state  may correspond to the same eigenvalue  . The probability  to find the 

measured value a is then given by summing (or integrating) over , i.e. over the entire a-subspace, the 
(degenerate) states with eigenvalue a:

 .

Principle 3. The time evolution of an isolated quantum system represented by the state vector  is given by

(4.5)

where  is the Hamilton operator and  is Planck’s constant. This is the time-dependent Schrödinger 
equation.

This equation is valid in the formulation of quantum mechanics called the Schrödinger picture. There are other, 
equivalent formulations of the time evolution, especially the Heisenberg picture and the Dirac (interaction) 
picture, where time evolution is entirely or partially shifted from the state vector to the operators.

It is equivalent to the Schrödinger equation (4.5) to define the time evolution of an isolated quantum system by

(4.6)

with the unitary time evolution operator

. (4.7)

The evolution according to (4.7) is therefore also referred to as unitary evolution.

Principle 4. For a normalized state vector  and observable A, the probability of observing value  by 
measurement is given by the Born rule

. (4.8)

In an experiment, say scattering, a particle is prepared (accelerated and collimated) into a particular state of 
motion, i.e., momentum and position. A subsequent measurement, after scattering, will give a result which is not 
precisely repeatable, be it for quantum-mechanical or experimental reasons. 

Very Important Point: A specific preparation does not determine the result of the following measurement, but only 
the probability of the results. 

A preparation of a state is just that, a preparation, and is independent of whatever measurement may or may not 
follow. Therefore the state must determine the probability distribution of all possible observables15, an 
observable being a measurable (at least in principle) dynamical variable. (This goal will be accomplished by 

14 Susskind’s notation. Griffiths uses a different definition of the wave function, but this one keeps it separate from the state 
vector.

15 Ballentine, 45.
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using the definition of the state vector as an operator in up-coming section 4.3.)

We can see this calculated probability not as the probable value of a specific event but as the average outcome 
over an ensemble of similarly prepared events, the ensemble being “… the virtual unbounded set of similarly 
prepared systems.”16 According to Ballentine, the chief proponent of this interpretation, this direct identification of 
a state with a set of probability distributions should make it possible to avoid many objections to QM.17

Principle 5. After measurement of an observable in a superposition of discrete states, as in (4.1), the state 
vector is no longer a superposition but a single eigenvector  of measured eigenvalue . A second 
measurement of the state gives the same result as the first. The first observation serves therefore to prepare a 
state for input to a second observation. An example would be a filter applied to the output of a Stern-Gerlach 
apparatus.  

What happened to all those initial states? It would seem that some process has led from the coherent 
superposition of macroscopically distinct eigenvectors of the indicator  (the macroscopic variable read off the 
measurement apparatus) to a single “reduced” state. The standard (Copenhagen) interpretation says that the 
wave function has “collapsed” to a single state. But what does “collapse” mean? This is the so-called 
measurement problem of QM and it’s a biggie. 

There are many proposals for interpreting what happens when measurement takes place. The instrumentalist 
approach, for instance, interprets the wave function as merely an instrument to calculate probabilities, without 
having any real meaning in itself. This is opposed to the realist approach, which interprets the wave functions as 
a thing, a new physical entity or field. There exist nuances of both these ideas. And we haven’t mentioned many 
worlds or pilot waves or other suggestions.

Consider this though. A superposition is not a thing in itself, it is always a superposition of some thing or things. If 
we have, for instance

and 

, 

then we can also write

and

.

It seems difficult to accept all four wave functions as representing real entities.18 But they do, as shown by 
succeeding Stern-Gerlach devices with a filter in between. The filtered z-spin up is a superposition of x-spin left 
or right, either of which is a superposition of z-spin up and down … and so on.

4.2.Multiple observables
If the eigenvectors of an observable are used to span the space, not only are the eigenvalues real and the 
eigenvectors orthogonal, but the matrix for the hermitian operator of the observable is diagonal, as we saw in 
equation (3.9) of the example. If two different observables commute, so that

, (4.9)

they are said to be compatible. If the eigenvectors of A are non-degenerate and are used as basis vectors, the 
matrices for both observables, A and B, are diagonal. (Sakurai’s Theorem 2.19) The eigenvectors are 

16 Ballentine, 47.
17 He says we will get to the point of this in chapter 9.
18 Thanks to Sabine Hossenfelder for this idea. Understanding Quantum Mechanics #2: Superposition and entanglement. 

https://www.youtube.com/watch?v=j6Mw3_tOcNI
19 Sakurai and Napolitano, 28. Their more nuanced treatment takes degeneracy into account.
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simultaneous eigenvectors of A and B. But if two observables, A and B, are not compatible, then they do not 
have a complete set of simultaneous eigenvectors.

In the case of two non-compatible observables A and B, we may know the eigenvectors and eigenvalues of A

, (4.10)

as well as the operator B in the  basis. We may also want to know the eigenvalues and vectors for B such that

. (4.11)

It is easy to show that if each has a complete set of orthonormal kets, then there exists a unitary operator U 
which transforms from one basis to the other (Sakurai’s Theorem 3.20):

, (4.12)

so that the transformation matrix is given simply by the inner product of the original bra and the transformed ket

 . (4.13)

With appropriate matrix summations, this becomes 

,

which we recognize as a matrix equation for the elements of the matrix of B. As in the preceding example (3.5), 
this can be solved for the eigenvalues by using the characteristic equation 

.

We then can use the eigenvalues  to solve for the eigenvectors  (up to a multiplicative constant), which is 
what we wanted.

Since by (4.11) B is diagonalized in , U is the unitary matrix which diagonalizes it from . So finding 
the eigenvalues and eigenvectors of operator B is equivalent to finding the unitary matrix which diagonalizes it.

But there’s more. Knowing the unitary operator U which diagonalizes B, we use it to transform A by the unitary 
transform , what we called earlier a similar matrix. A and  are called unitary equivalent 
observables. From the eigenvalue equation (4.10) for A, we then see that

by (4.12). This is just the eigenvalue equation for  and tells that operator has the same spectrum of 
eigenvalues in  as in . Unitary equivalent observables have identical spectra. (Sakurai’s 
Theorem     4  .21)

As an example, consider spin components  and , spin in the x and z directions. Rotating the latter by an 
angle of  about the y-axis gives the former. Rotation is a unitary transformation, so  and  are unitary 
equivalent observables and have identical eigenvalues. And they do:  and .

On the other hand, in the case of two operators  and  which do not commute, that fact plus some geometry 
(the Cauchy-Schwarz inequality) leads to the generalized uncertainty principle:22

. (4.14)

This result is not a separate postulate, but a consequence of quantum-mechanical non-commutivity. The original 
Ungenauigkeitsprinzip would have been better and more accurately translated as “inexactitude principle” or 
“imprecision principle” and could have avoided overly hasty interpretations, but...  The result can also be shown 
to be

20 Sakurai and Napolitano, 33. 
21 Sakurai and Napolitano, 37. 
22 Susskind and Friedman, 147.
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(4.15)

where the standard deviation of an observable is given by

. (4.16)

This quickly leads to the usual version concerning position and momentum

and can be shown to be true also for energy and time

.

This is a QM result and has nothing to do with SR four-vectors. “No experiment can ever beat this limitation.”23

We can understand this qualitatively. We will see in section 5.4 that the QM operators for observables are the 
generators for the corresponding symmetries, so a measurement of momentum is equivalent to the action of a 
translation generator.24 So a measurement of momentum moves the system some, thus making the position less 
certain.

4.3.Alternative view -- the state as operator
There is an alternative way of viewing the state -- as an operator. According to this point of view, to each state 
there corresponds a unique state operator, also called the density operator , which must be Hermitian

, (4.17)

 nonnegative, and of unit trace.25 .

For a pure state, the state operator is defined to be

, (4.18)

where  is a state vector and  the corresponding dual vector. It is at once state or density operator and 
outer product, by definition; and projection operator, by its action. It projects an operator A onto the direction 
of  :

.

 If we have a sum of states , then as a  projection operator, it projects out the  state:

.

In an orthonormal basis , its matrix elements are

,

in which form it is indeed a state or density matrix. 

The state operator has unit trace:

, (4.19)

assuming, of course, that the state vector is normalized. If  is a non-negative state operator, then for all u

23 Susskind, 270.
24 Schwichtenerg, PS, 197.
25 Ballentine, 46.
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. (4.20)

In the pure state – and only in the pure state -- it is easily seen to be idempotent:

.

The view further stipulates that if a preparation gives rise to a virtual ensemble of events represented by the 
operator , then the average value of multiple measurements of a dynamical variable , represented by the 
operator  is 

, (4.21)

This interpretation does not deal with the measurement of one event but an ensemble of many events.26 

In detail,

,

since A is Hermitian.

We can take the time differential of the definition of a pure-state  in (4.18) and use (4.5) to show that

, (4.22)

the Schrödinger equation in terms of the density operator. Now suppose we have a superposition of states. 
We have but to generalize the state vector to

, (4.23)

where  is the probability that the system is in the k-th state. This operator is still Hermitian and has unit trace, 
and the average value of a dynamic variable is given by (4.21). But it is not idempotent. This is one way to 
distinguish a pure state from a mixed one.

More on all this in chapter 8. 

High points - résumé

• A pure state of a physical system is described by a vector in Hilbert space.

• A physical observable is represented by a Hermitian operator on a state vector. Its eigenvalues are real 
and constitute the spectral values of the operator.

• Possible values of a measurement of an observable are its eigenvalues,. The eigenvectors are taken to 
form a complete set, capable of forming an orthonormal basis of the space.

• The time evolution of the state vector is given by the Schrödinger equation in the coordinate 
representation, or, equivalently, by a unitary time-evolution operator whose generator is the Hamiltonian.

• The probability of observing a value of an observable is given by the Born rule.

• A measurement can leave a super-positioned state in a single, or pure, one, which can constitute the 
prepared state for another measurement.

• An alternative view of the state vector is to consider the state an operator called the state or density 
operator, a function of state vectors,.

26 This is one of Ballentine’s themes, along with the need of rigged Hilbert spaces for completeness of continuous 
eigenvectors.
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5. Galilean symmetry
We approach this subject through a study of transformations. Transformations in space-time may change both 
the states and the observables. If they are to correspond to what we observe before us, the laws of nature must 
be invariant under certain symmetry operations, namely, displacements in space or time, rotations in space, and 
changes in uniform relative motion of reference frames (inertial frames, to fans of SR).  

In this chapter, we consider only pure states (4.18). Nevertheless, it’s fairly slow going, so if you don’t want to 
slog through it, you can skip to the résumé in section 5.5.

5.1.Unitarity
Essential point: Transformations on vector spaces of interest in physics can be represented by unitary operators, 
and a one-parameter unitary transformation can be written as an exponential in terms of a Hermitian generator.

According to a theorem of Wigner: Any mapping of the vector space onto itself that preserves the value of 
 may be implemented by an operator U which transforms state vectors such that

,

, (5.1)

with U being either unitary or antiunitary.27 We are interested especially in the unitary operators, for which

,

because they preserve the complex values of inner products. The transformation of the state vectors must be 
accompanied by a transformation of the operators for observables, such that

  and ,

Putting the transformation into the second equation gives

so

and finally the operator (observable) transforms under a unitary transformation  as

. (5.2)

In the language of linear algebra, two such matrices  and  are said to be similar for the transformation 
matrix . 

It can be shown that matrices representing the same linear transform with respect to different basis vectors are 
similar.28 For a family of unitary operators , functions of a continuous parameter , we may expand  
infinitesimally about  as

.

Now expand  similarly, which gives

.

Since unitarity requires this to be equal to 1, the  term must be equal to zero and we see that

where  . (5.3)

27 Ballentine, 64.
28 Griffiths and Schroeder, 474.
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So K is the Hermitian generator of the unitary operator for any transformation, infinitesimal or finite.29,30 We can 
see this by taking  and considering

. (5.4)

Differentiate this with respect to , set  and use (5.3) to get:

,

the solution to which is

. (5.5)

This shows that any one-parameter group of unitary operators can be written in the form of an exponential 
including its Hermitian generator.31

5.2.Active and passive transformations
We can actively transform a function or passively transform the coordinates in terms of which the function is 
expressed. It’s like either you move it ahead or you take a step back.

The symmetry transformations of space-time can be written as32

 

. (5.6)

This is what Ballentine calls the Galilei group of transformation and has ten parameters, 3 each for rotation (R), 
displacement (a) and relative velocity (v), and one for time (t). (Be careful, a is a displacement in space, not an 
acceleration.) In other books, it is referred to as the Galiliean group and I shall call it that. Remember, this is non-
relativistic. Nevertheless, the laws of low-energy, non-relativistic QM must be invariant under these 
transformations. 

We usually use these relations in a representation on coordinate space (chapter 6.1), in which case 
transformations on function space and on coordinate space are inversely related. By definition of the unitary 
transformation , the transformation of the function  relative to a fixed set of coordinates is

. (5.7)

This is not a change of the coordinate system, which would constitute what is called a passive point of view. This 
is the active point of view, in which the object is transformed relative to a fixed coordinate system. Imagine that it 
is a translation, for instance. The function would look different because it would now be evaluated at a new point 
in space. The relation of the new point, , to the old, , is given by 

,

where both points are relative to the same coordinate system and the operator  simply maps one point into the 
other within that system.33 Invariance (symmetry) requires the value of the transformed function at the 
transformed point be the same as the value of the original function at the original point.34 This essential 
relationship appears in the two middle terms of the following equation.

. (5.8), 

According to (5.7)

29 See sections 2.3 and 2.3.
30 Ballentine, 65.
31 Ballentine, 68.
32 Example from Ballentine, 66ff.
33 Physics 221A, Rotations in 3-Dimensional Space. https://bohr.physics.berkeley.edu/classes/221/notes/classrot.pdf
34 Ballentine, 67-68.
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,

so we can combine the last terms of these two equations and drop the prime to get

, (5.9)

This important equation shows clearly the inverse relation between the function and coordinate transformations. 
In terms of a translation, e.g., moving the object (function) ahead is equivalent to taking a step backward. 

Let’s consider an example of active and passive rotations by using simple rotations of a scalar function in a 2d 
plane,35 

Consider an active counter-clockwise rotation of an object, a point, in the 2-d plane through an angle . The 
transformation is given by

,

where

(5.10)

and the superscript (a) designates the active transformation. Then the transformed function is given by

(5.11)

By invariance, a new (transformed) scalar function at its new point must be equal to the old function at the old 
point.

,

so using (5.11) and changing from primed to non-primed gives

, (5.12)

which is equivalent to (5.9) for this case.

On the other hand, we may consider a passive rotation, leaving the point where it is but rotating the coordinate 
axes through a clockwise angle , then the transformation is

,

with

, (5.13)

by (5.10). Again, invariance tells us that 

,

so passing from double-primed to un-primed

, . (5.14)

Both (5.12) and (5.14) are equivalent to (5.9). 

This example shows that you can rotate an object through an angle or rotate the coordinate system through the 
inverse angle and get the same result. Notice that    means simply that , 
as we expect intuitively.

35 Ballentine, 176-178. He does it in 3d, I in only 2d.
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5.3.Symmetries of the Galilean group
Since the transformations of the Galilean group form just that, a group, two consecutive Galilean transformations 
form another. Using this fact, we can calculate the Lie brackets for the group generators.

Starting with equations (5.6), 

 

.

we find the result of a pair of transformations:

.

Remember,  is displacement, not acceleration,  so

. (5.15)

Two points, not considered by Ballentine, who does not mention group theory or Lie algebras. 

• The Galilean group is not irreducible, as it contains a subgroup, the group of rotations. 

• We are talking here about a representation of the Galilean group in a four-dimensional space-time, 
where the generators are the members of the group’s Lie algebra. Now we need to find the commutators 
(Lie brackets).

Although we can write the unitary operator, from (5.5), as

,

it is convenient to write the generators of this representation of the Galilean group using more recognizable 
terms. They are illustrated in Table 1.

Space-time transformation Unitary operator Generator

Rotation about axis  

    

Displacement along axis  

   

Velocity along axis 
   
Time displacement

   
Table 1. Unitary operators of space-time transformations of the Galilean group, after Ballentine36

36 Ballentine, 69.
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In the table, the factors of  in the operators are not yet derived. I include them here just for eventual 
correctness. For the current derivation of the sense of the generators, consider .

Since Galilean transformations form a group, the product of any two transformations must be another member of 
the group and by symmetry must give rise to the same state. But any difference of phase between vectors does 
not affect the state, so

, (5.16)

where the phase difference  is a function of  and .

For the moment, we only  know these objects as generators of transformations. They are operators, not scalars, 
and so, in general, they do not commute. So we must use the Baker-Campbell-Hausdorf formula for non-
commuting exponential terms:37

(5.17)

The commutation terms on the right of the exponent will lead us to commutation rules (Lie brackets) for the 
generators. Writing the generators all as , and considering the product of two pairs of transformations and 
their inverses leads to

. (5.18)

Reasoning from completeness of the group, we can use (5.5) to write for any given transformation

. (5.19)

for infinitesimally small . But (5.18)  also is a member of the group, so by (5.18) and (5.19), the commutators of 
the group must obey

 , (5.20)

 being the unit matrix. The last term is the difference of phase from (5.16). 

We now use several methods to evaluate the commutation relations.38 For instance, in the absence of rotations 
or velocity changes, displacement and time changes in equations (5.15) are independent of each other: 

 and , which are independent of the order of the transformation  and  so their 
commutators must be zero aside from the phase factor (relations (a) and (g) in Table 2). There are similar results 
for space displacements and velocity changes (  and ), and for rotations and time 
displacements (  and ), so their commutators also must vanish aside from the phase 
term (relations (f), (b) and (i)). 

Moreover, a rotation commutes with a displacement or velocity displacement along the rotation axis, which gives 
us (g) and (h) for equal indices. 

A negative change of velocity along the x-axis followed by a negative time displacement followed by their 
inverses expressed as in equation (5.6) yields

.

Working out these transformations using equations (5.3) and comparing the two gives us (h). Relation (c) is of 
course a result of well-known rotation matrices. Similar calculations based on  and on  yield 
relations (e) and (d).

As for the phase terms, all but one can be eliminated by consistency conditions or by suitable choice of phases 

37 Griffiths, QM, 121. This version assumes that each of  and , although not commuting with each other, do commute 
with their commutator, . 

38 Details in Ballentine, 66-76.
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of certain vectors. The Jacobi identity can be used with triplets  to show that  is diagonal 
and again with   to show that the diagonal elements are identical, hence the result (f), where  is a 
real, as yet unidentified constant.

Galilean group commutation relations

(a)  (f)  

(b)  (g)  

(c)  (h)  

(d)  (i)   

(e)  

Table 2. Commutation relations for the Galilean group of transformations

We have now derived the commutation relations (Lie brackets) for the generators of the Galilean symmetry 
group. But what do they mean?

5.4.Meaning of Galilean generators
Definition of a position operator and derivation of its commutation relations with the Galilean generators, plus 
some intuition, leads to the identification of the Galilean generators with physical variables: momentum 
(translation), angular momentum (rotation) and energy (time evolution). The meaning of the generator of velocity 
change remains obscure (to me).

In order to continue, we begin by defining a position operator in the coordinate representation by

(5.21)

and an average velocity

. (5.22)

We will deduce the physical meanings of the symmetry operators by studying their relation to . 

By (5.2),

,

so if , shifting the exponential to the other side results in  and

. (5.23)

(This equation is temporary, to derive the meaning of the generators, and differs from the Schrödinger equation 
(4.5) by a factor of , so you could consider it uses . This will be the case from here up to (5.29).) Then 
carrying out (5.22) using integration by parts and (5.23) leads to

. (5.24)

This is the commutator for  and . We can find the other commutators of , with ,  and .39 The results 
are:

39 Details in Ballentine, 76-85. Clearly, I am skipping a lot.
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,

,

.. (5.25)

(Again, factors of   are missing on the right-hand side of these equations.) Consideration of a free particle with 
no internal degrees of freedom requires 

and . (5.26)

(See also section 7.2.1.) The commutator (h) and (5.26) give

, which is satisfied by , (5.27)

and from (5.22)

. (5.28)

Although M looks a like the mass, we cannot be certain that it is, as equations (5.26) to (5.28) are equally 
satisfied by a quantity proportional to the mass. We therefore assign the proportionality constant a name. Guess 
what?

= a fundamental constant, such as , (5.29)

Then  is a number which can be fixed only by experiment. Now we have but to accept M, P, H and J as mass, 
momentum, energy and angular momentum. Then in all preceding equations, we must replace these symbols 
with the same divided by , as (5.29) implies  . So the unitary operators for space displacement, 
rotation and time evolution are

, and .

We also need to add  to the non-zero right-hand-side of the commutators in Table 2, especially

, or (5.30)

and the commutation relations of (5.25), written in a more familiar form, the canonical commutation relation of 
QM:

. (5.31)

Identification of the generators proceeded from their commutators with the position operator, the only classical 
operator to be identified from the outset with a physical observable. 

Note that the derivation of these operators started with symmetry under Galilean transformations, their unitarity 
and hence their generators’ being Hermitian, and general QM principles. It was only based on equations of 
classical physics towards the end of the derivation (e.g., 5.28). 

5.5.Résumé of Galilean (NRQM) symmetries
Here are the bare bones of how Galilean symmetries are related to physical observables momentum, angular 
momentum and energy.

• Essential point: Transformations on vector spaces of interest in physics can be represented by unitary 
operators.

• Any one-parameter group of unitary operators can be written in the form of an exponential in terms of its 
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Hermitian generator.

• We can actively transform a function or passively transform the coordinates in terms of which the 
function is expressed. Either you move it ahead or you take a step back.

• QM states must be invariant – symmetric -- under the ten Galilean transformations, which can be 
subdivided into three each of rotations, translations and velocity changes, plus one time translation -- 
three vectors and one scalar.

• Since the transformations of the Galilean group form just that, a group, two consecutive Galilean 
transformations form another. Using this fact and some obvious physical facts about the order of 
operations, we can calculate the Lie brackets for the group generators.

• The effects of these transformations then can be used to deduce their commutation relations (Table 2).

• Definition of a position operator and derivation of its commutation relations with the Galilean generators, 
plus some intuition, leads to the identification of the Galilean generators as momentum (translation), 
angular momentum (rotation) and energy (time evolution). The meaning of the generator of velocity 
change remains obscure (to me).

• Identification of the generators proceeded from their commutators with the position operator, the only 
classical operator to be identified from the outset with a physical observable.

6. Representations
We consider two representations of the state vector, in terms of eigenfunctions of position (coordinates) and 
momentum.

6.1.Coordinate representation and applications
We use the coordinate representation of an abstract linear vector space  by taking as basis vectors the set of 
eigenvectors of the position operator (5.21). An expansion coefficient is commonly called a wave function, 
which is unfortunate, as they do not represent classical waves:

. (6.1)

An operator in this representation is given by the rule

. (6.2)

The position operator just multiplies by the eigenvalue 

. (6.3)

The momentum operator can be derived from its role as generator of space displacements

.

Expansion of this by a series and comparing that to the expansion in a of  leads to

. (6.4)

Then for a single particle (4.5) becomes Schrödinger’s equation

. (6.5)

This looks like a wave equation, but that is just because it takes into account only a single particle. Consider the 
equation for N particles:
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(6.6)

in an abstract N-dimensional configuration space. Here,  is the potential for interactions between 
particles. If each particle was associated with a wave, there would be N waves in ordinary 3d space. But in 
equation (6.6), there is only one “wave function” for all N particles. So it is impossible to associate a  physical 
wave in 3-d space with each particle. Ballentine insists that the “… correct interpretation of  is as a statistical 
state function, a function from which probability distributions for all observables may be calculated.” Then 

 is the probability density in configuration space for particle (1) being at position , particle 
(2) at position  and so on. In an experiment which separates a  beam into two parts by a semi-reflecting 
mirror, this means that never is a particle found at once in both separated beams. This result has been confirmed 
experimentally.40

All our derivations so far have been based on Galilean symmetry, so the Schrödinger equation must be invariant 
under those transformations. Consider the example of a transformation only by a uniform velocity displacement:

, . (6.7)

Then

, . (6.8)

For the Schrödinger equation to be invariant under these transformations, we must have

(6.9)

and so, including a phase, , which does not change any observable,

. (6.10)

Putting (6.8) into (6.5) and assuming , we ca carry out the (laborious) calculation and 
show this to be true only if

. (6.11)

If the potential is zero, then

, (6.12)

and combining the last three equations gives

  , (6.13)

which agrees with . The so-called wave function does not behave like an ordinary 3d 
wave because of the extra phase factor in (6.10) and equation (6.13) shows that this term is essential for 
Galilean symmetry.

For a single particle, the probability of the particle’s being within a region  is . Taking the 

time derivative of this leads to the continuity equation

 

with

40 Ballentine, 101.
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.41 (6.14a)

. (6.14b)

Interestingly, the velocity operator (5.28)

and (6.14b) tell us that

, (6.15)

so if  is property normalized, the integral of J over all space is the average velocity of the state:

. (6.16)

The continuity equation requires the continuity of  and according to (6.14), it requires the continuity not only of 
, but also of .42

Ballentine goes on to discuss again the necessity of rigged Hilbert spaces, as well as tunneling and the path 
integral method.43 Although the path-integral method has few practical uses in ordinary QM, it possesses great 
generality. “It is common to all formulations of quantum mechanics that the probability of a process is given by 
the squared modulus of a complex amplitude.” Path integrals make clear the importance of interference in QM. 
The phase of each amplitude is simply related to the action along the path, and this fact makes the classical 
correspondence logical given that the classically allowed paths often dominate. This requirement is valid for 
physically realizable states, but not necessarily for eigenfunctions of observables, which are only required to lie in 
the extended space of the rigged Hilbert space. Such considerations lead to the requirement for  of a 
free particle to be real and its energy to be non-negative.44

High points

• Momentum operator in coordinate representation/

• Schrödinger equation for single and multiple particles.

• Example of Galilean transformation invariance of Schrödinger equation.

• Probability density, average momentum and continuity equation.

6.2.Momentum representation and applications
Let’s start by defining the Fourier transform and its inverse in terms of general functions.

(6.17)

(6.18)

In these equations,  is the Fourier transform of ;  is the inverse Fourier transform of . 

From (6.4), the momentum eigen-equation in the coordinate representation is

41 I should be putting x in bold-face squarely as a vector in all these equations, but it’s too damn much trouble.
42 Ballentine, 106-107, discusses the nuances of the statement.
43 For the equation(s) of the path integral method, see my notes on symmetry and QFT.
44 Ballentine, 110.
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(6.19)

of which “normalized” solutions in a single dimension are of the form

, (6.20)

where , as usual. What is meant in this case by “normalized” is

,

which is referred to as Dirac normalization. In fact, the eigenfunctions of a hermitian operator whose spectrum 
is continuous like this are not normalizable, but a wave packet around this momentum value is. Fortunately, 
eigenfunctions with real eigenvalues are Dirac ortho-normalizable and complete. 

Equation (6.20) is the equation in the x basis of a wave of wavelength

, (6.21)

which is the De Broglie formula. Equations (6.19) and (6.20) are in the x basis or coordinate representation.  
In Dirac notation

, (6.22)

the momentum wave function in the coordinate representation, or the projection of the p function onto x. In the 
position representation, the probability for a given value of x (although we should multiply by dx and say for a 
given increment of x) is

(6.23)

and for a given value of momentum

.

But we can also say that

(6.24)

where  is the wave function in the momentum representation. 

Slipping back into Dirac notation, define the identity operator in both bases

(6.25)

and

. (6.26)

Supposing a state vector , the wave function in the position-representation is

(6.27)

and in the momentum representation

. (6.28)

Note the order here: The wave function is the projection of the state vector onto the eigenvectors of the 
representation. This is just the content of equations (6.27) and (6.28).
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Using the identity operator in the x basis

,

so from the complex conjugate of the momentum eigenvector (6.22) in the x basis and the wave function in the p 
basis (6.27),

. (6.29)

Starting from the x-basis wave function (6.27) and using the identity operator (6.26) leads to the inverse

(6.30)

These two representations, position and momentum, can be seen from (6.17) and (6.18) to be Fourier 
transforms of each other. They are the means for transforming a wave function from the position representation 
to the momentum representation or vice versa.

Just as the coordinate representation takes as basis vectors the set of eigenvectors of the position operator, so 
does the momentum representation use as basis vectors the eigenvectors of the momentum operator, Back in 
3-d,

.

where continuous eigenvalues require orthogonality and normalization

.

In order to discover the relation between the momentum and position eigenvectors, we calculate the inner 
product of the two, using  the BCH formula (5.17) and the momentum operator in the position representation with 

.

.

The solution after normalization is

.

Just as we had a “wave function”, the coordinate representation of a state vector , so by using 

 can we find the same state vector in the momentum representation.

.

which is the Fourier transform of . We can then find the position operator in the momentum 
representation.

,

so the position operator in the momentum representation is

,

the form of which is as pleasing as it is unsurprising.

Chapter high points

• The momentum-representation state vector is the Fourier transform of the position one, and vice versa.
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• The position operator in the momentum representation is analogous to the momentum operator in the 
position representation. 

7.  Useful examples of QM calculation
Angular momentum and harmonic oscillators will pop up all over, for spin or for particles in QFT (which we will 
not discuss here.)

7.1.The simple harmonic oscillator (SHO)
A harmonic oscillator is a system subject to a quadratic potential which produces a force which tends to restore 
the system to equilibrium (Hooke’s law). The math of harmonic oscillators is extraordinarily valuable because all 
sorts of systems are subject to such a force, at least infinitesimally.  

For a classical 1-d SHO, the potential is

so Newton’s second law is

. (7.1)

Solutions of this equation are of the form 

.

If B=0, the kinetic and potential energies are then

(7.2a)

and

. . (7.2b)

Both of these energies depend on the square of the amplitude, . The total energy is then

, (7.3)

with , or .

In QM, a SHO must satisfy a Schrödinger equation of the form

. (7.4)

The solutions involve Hermite polynomials of degree n and the energy of each state is 

, (7.5)

where again , or . 

However, there is a more interesting way to solve for the energy eigenvalues. Rewrite the Schrödinger equation 
in terms of momentum and position operators.

.

It would be nice to factor this into something like , but that would not work because in 
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QM the momentum and position operators do not commute. Instead, define two operators,45

(7.6)

and its Hermitian conjugate

(7.7)

in terms of operators  and  . Since neither one is Hermitian, they are not operators for observables. Because 
of the position-momentum commutation relations (5.31), 

,

it turns out that

. (7.8)

The Hamiltonian can be written

, (7.9)

where comparison with (7.5) shows that the number operator 

(7.10)

returns the number of entire units  of energy in a given state:

. (7.11)

Then  is also an eigenstate of the Hamiltonian, which may be written as

(7.12)

so that

, (7.13)

The eigenvalues are equally spaced at intervals of . Since

, (7.14)

it turns out that  has the effect of increasing the energy of state  by one unit of ; it therefore is called a 
raising operator. Aside from the form of the Hamiltonian (due to the potential), this result depends only on the 
fact that the position and momentum operators are Hermitian and on their commutation relations.

Similarly, 

, (7.15)

so  is considered a lowering operator and the pair, raising and lowering, are called ladder operators. Energy 
is positive, so there must be a ground state to which application of  gives a zero or negative result, and this can 
easily be used to find the wave function of that state.46 Plugging that back into the Schrödinger equation yields 
the result for the ground-state energy

.

45 For details, see Townsend, 196-199, or Griffiths and Schroeder, 40-46, or Lancaster and Blundell, 19-23.
46 Griffiths and Schroeter, 43-44.
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Since repeated application of the raising operator to the ground state  can create any energy state, we can 
write the normalized state

. (7.16)

Note well, all this follows from the (classical) form of the Hamiltonian and the QM commutation relations for the 
position and momentum operators. In QFT, the increments of energy will be taken to be particles so that the 
ladder operators become creation and annihilation operators.

7.2.Angular momentum
Angular momentum is an important and multi-faceted topic in QM.

7.2.1.Orbital angular momentum
One way to consider angular momentum in QM is to start with its classical definition 

and use the canonical commutation relations for position and momentum operators:

, . (7.17)

The result (cyclic in I,j,k or x,y,z) is

(7.18)

along with 

, (7.19)

where 

. 

The same equations show that although the three components of  are incompatible as observables, one of 
them, say , which would be called a Cartan operator in group theory, commutes with , which would then be 
the Casimir operator, so the two may have simultaneous eigenvalues and common eigenvectors, as we saw in 
section 4.2. 

One can see the commutation relations of equation (7.18) as the basis of angular momentum (and spin) in QM47; 
everything else concerning angular momentum follows from them. We can, nevertheless, look at it the other way 
around and start with our knowledge of Galilean transformations, in particular, rotations.

From Table 1, the unitary operator for a rotation about an axis parallel to the unit vector  is

. (7.20)

For a one-component state, from (5.9), we have

.

Recall that this equation expresses the equivalence between an active transformation of the function, on the left, 
and a passive transformation of the coordinates, on the right. For a rotation through angle  about the z-axis, it 
becomes

.

We can consider this a function of a single variable ,

47 Susskind’s point of view.
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.

Then for infinitesimal  it may be expanded in terms of  to give in the lowest order

.

Comparison of this to the expansion of (7.20) gives

which is the z component of the orbital angular momentum, , in the coordinate representation. 

Suppose the eigenvalue equations for  and   to be as follows:

and  .

Define operators

. (7.21)

Because of the commutation relations, 

,

it turns out  is a ladder (raising/lowering) operator, since

. (7.22)

The raising operator raises the  value of the eigenstate by . The raised or lowered eigenstate has the same 
value of . Since  has to be less than or equal to , taking its maximum value to be  (the negative of which 
turns out to be its minimum), we find that

,

where  is the “top” eigenfunction, as for the case of a SHO. Including both observables in the function notation, 
this in turn leads to

(7.23)

and

, (7.24)

where  0, ½, 1, 3/2, … and  . 

These values follow from the requirement that m take on integrally-spaced values from  to , so  and 
must therefore be an integer or half integer.

Note that the maximum measurable (observable) value of the z component of  is less than the magnitude of .

7.2.2.Internal angular momentum
If the state contains more than one component, we can use matrices to represent the state and the rotation 
operator. The most general case, according to Ballentine and equation (5.9), is

.

The operator D may act on internal degrees of freedom and result in linear combinations of the state functions. 
So we update (7.20) to

. (7.25)
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Since  must be unitary, we can write it as

, (7.26)

where the coordinate components of S are Hermitian. Substituting (7.26) into (7.25) and comparing to (7.20) 
shows that the total angular momentum has the form 

.

It’s not divulging a major spoiler to say that we will identify  with the spin angular momentum, with the same 
commutation elements as .  Helpfully, Ballentine says that the orbital angular momentum is that”...of the motion 
of the center of mass of the object relative to the origin of coordinates. The spin may be identified as the angular 
omentum that remains when the center of mass is at rest.”48 If  and  are conserved, then so is . If there is 
coupling between the two, such as spin-orbit coupling in atoms, then they are not conserved independently, but 

 is.

Being an angular momentum, the spin obeys the usual equations (7.18) and (7.19) in the form 

, . (7.27)

We normally consider the spin as existing in a state of dimension 2s+1 spanned by the eigenvectors of (7.27). 

7.2.3.Spin ½ 
For the spin ½ case, we write

, (7.28)

where  denotes the usual Pauli spin matrices. For group theory fans, this is the two-dimensional representation 
of SU(2), of rank 3 ( ), with one Cartan operator, usually , and Casimir element .  

,    ,    (7.29)

The spin operator in an arbitrary direction given by the unit vector  is  where

from polar coordinates with . Then writing out the components of  gives

.

That the eigenvalues are  is easily found from the characteristic equation, and the normalized eigenvectors 
may be chosen as49

and , (7.30)

Note two things:

• those half angles, , about which more shortly; and

• in each eigenvector the phase is given by one parameter,  , and the magnitude by the other, .

The rotation is indeed through an angle  but its effect on the spin space is that of a rotation by half .

We are in a space of two dimensions, so the two angles are adequate for parametrization of both the relative 
magnitude and the relative phase of the eigenvectors. So if we choose a component of a pure system of spin 
s=½, usually the z-component, we can orient it in any direction in space in such a way that that is the direction of 

48 Ballentine, 166.
49 Ballentine, 172.
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the  eigenvector.50

The state operator is a 2x2 matrix and so can be expressed in terms of four linearly independent matrices such 
as  and the three Pauli matrices. So any state vector for spin ½ can be written as

. (7.31)

Since the Pauli matrices are traceless and ,

and similarly for the y and z components, so that

, (7.32)

the polarization vector of the state.

7.2.4.Rotation by 2 pi
As for the half-angles, from (6.19) we have for a rotation through an angle  about unit vector 

. (7.33)

(This is fairly easy to show for J along the z-axis, noting that the j in the exponent of the last term is there 
because it has the same integer or half-integer character as the  eigenvalue m.) It can be shown to be true for 
any direction, so we generally just write it as . 

 is not a trivial operator and has non-trivial consequences. We are accustomed to think that all dynamical 
variables are invariant under a rotation of , so, by (3.13),

, so , (7.34)

where A is any physical observable whatsoever. But (7.33) shows that the state vector is not necessarily invariant 
under a rotation by . This is in agreement with (7.20) and its half angles. So we must distinguish between the 
invariance of observables and that of states. Indeed, suppose a unitary operator U which leaves a dynamical 
variable F invariant, so that by (7.34) we know , but not the state, so 

. 

But in the transformed basis

,  by (6.29)

  ,

and the dynamical variable has the same expectation value in both unequal states. This can also be shown for a 
state vector in format (4.18).

Now, equation (7.33) shows that rotations by  divides the vector space into two subspaces. We can denote 
the integer angular momentum states by  and the half-integer ones by , so that

and .

If A represents any physical observable, then by (7.33)

so that ,

which is impossible, so . No physical observable can have non-vanishing matrix elements 
between integer angular momentum states and half-integer ones. This superselection rule may be stated as 
saying that interference of vectors of the  and  types is not observable. Since they have no observable 

50 Ballentine, 172. “Therefore any pure state vector of an s=½ system can be associated with a spatial direction  for which 
it is the  eigenvector for the component of spin.” 
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consequences, we may consider them to be zero. So the probability of a transition between the two subspaces is 
zero: Once a half(or whole)-integral, always a half(or whole)-integral.

Such a superselection rule resembles a symmetry in that it represents a transformation which gives rise to a 
conserved quantity, the eigenvalue . But whereas there are no observables which do not commute with 

, there are such observables in the case of ordinary symmetries, a common example being between 
position and momentum. Measurement of position permits distinguishing between states that differ only by a 
displacement, but there is no way to distinguish between states that differ only by a  rotation.51 However, 
experiments using neutron interferometry have confirmed effects due to the minus sign introduced by a  
rotation of fermions.52

High points

• From the commutation relations, we can define ladder operators which permit deriving the eigenvalues of
  and .

• The exponential form of the unitary rotation operators shows that  is the angular momentum. 

• The rotation operator acting on internal degrees of freedom leads to the definition of another angular 
momentum, which we call the spin. The total angular momentum, orbital plus spin, is conserved.

• Usual equations for the spin in terms of the Pauli matrices. The eigenvalues of spin ½ along a given axis 
are .

• We must distinguish between invariance of observables and of states. Dynamical variables are invariant 
under a rotation by . This is not necessarily true for state vectors.  multiplies a state vector by 
+1 in the case of integer spin, -1 in the case of half-integer spin, effectively dividing the space into two 
subspaces. 

• No physical observable can have non-vanishing  matrix elements between integer angular momentum 
states and half-integer ones. This superselection rule resembles a symmetry in that it represents a 
transformation which gives rise to a conserved quantity, the eigenvalue . There are no observables 
which do not commute with , but such is not the case of ordinary symmetries.

7.3.EM in QM – charged particle in EM field
The goal here is to find a Lagrangian from which we can derive the Lorentz force on a particle of charge q and 
velocity  due to an electric field  and a magnetic field:

, (7.35)

in its classical form. I will go with Leonard Susskind on this one and accept that there is no way one can make a 
suitable Lagrangian directly involving the magnetic field.53 We therefore take the Lagrangian for a free particle 
and add a term which Is a multiple of the vector potential, as well as a term for the scalar potential  .

. (7.36)

We now have adopted  for the charge previously referred to as q (to avoid confusion later on). The other terms 
of course come from foreknowledge of the desired result. The mechanical or kinetic momentum along the x-axis 
is still , but the canonical momentum, defined as a derivative of the Lagrangian, is now

. (7.37)

In this case (presence of magnetic field) the canonical momentum not only is different from the kinetic 

51 Ballentine, 185.as a Legendre transform of the Lagrangian
52 Sakurai and Napolitano, 158.
53 Ballentine, 84, shows that only a scalar and a vector potential are compatible with Galilean symmetry. Both must be 

independent of the canonical momentum.
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momentum, , it is gauge-dependent, changing as the gauge field  changes, and therefore not an 
observable. It is the mechanical momentum  which is an observable and a constant of motion.

By (2.3),

,

so if the Lagrangian is independent of coordinates (translation invariant), the canonical momentum is conserved.

So much for the Lagrangian approach, let’s consider the Hamiltonian. Using (7.37),

, (7.38)

since the A terms cancel. This reflects the fact that the Lorentz force due to a B field is perpendicular to the 
particle’s direction of motion, so no work is done along that direction and no energy is added by this field. The 
Hamiltonian contains the usual  depending only on the mechanical momentum.54 So the energy is due to 
the good ol’ mechanical momentum, meaning that the kinetic energy calculated is just the usual  and 
energy is conserved and the magnitude of the velocity is constant.55 

In terms of momentum and position, the Hamiltonian is

. (7.39)

From this equation, we can use Hamilton’s equation of motion to calculate

 . (7.40)

Comparing this to the time derivative of (7.37) and using differentiation by parts, we obtain the Lorentz force due 
to the B field, which is what we wanted. 

We have now seen that both the Lagrangian via (2.3) and the Hamiltonian via (7.40) tell us that if the Lagrangian 
(or the Hamiltonian) is independent of the coordinates, i.e., invariant under translation, then it is the canonical 
momentum which is conserved. Since it is then the generator of translations [Is it?], it is represented in the 
coordinate representation by .56 In any case, that works.

In the case of a change in gauge , the mechanical momentum , which indicates the trajectory of the 
particle, is gauge-invariant and so does not change, Therefore, because of (7.37), the canonical momentum 
must change in order to compensate for the change in .57 Different gauge potentials correspond to different 
state vectors.

• In the absence of a magnetic (or other) force field, the mechanical and canonical momenta are equal.

• In the presence of a magnetic (or, maybe, other) field, the canonical momentum varies between different 
gauges. The mechanical momentum  still follows the trajectory of the particle and is conserved. The 
canonical momentum is not gauge-invariant but changes in such a way as to maintain the conservation 
of mechanical momentum through (7.37).58

• The kinetic energy  is conserved in both cases.

• The canonical momentum is always the generator of translation. The operator for a translation  is 
,  where the p in question is the non-invariant canonical momentum.

54 In the notation of Sakurai and Napolitano.
55 Susskind, TM, 208-209.
56 Heisenberg uncertainty principle and the canonical momentum operator, Physics Forums. 

www.physicsforums.com/threads/heisenberg-uncertainty-principle-and-the-canonical-momentum-operator.1067394/.
57 Sakurai and Napolitano, 129.
58 QUESTION: Is this still true in GR?
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• The canonical-momentum operator in the coordinate representation is  because it’s the generator 
of translations (?).

Put more intuitively, a change of gauge changes properties of the system under translation, so the state vector 
changes, as does the canonical momentum, since it is the generator of translation. The mechanical momentum 
and the energy remain invariant.

So, in the case of a charged particle in a magnetic field (ignoring eventual magnetic effects due to the charge).

• The non-invariance of the canonical momentum in this case, plus its being the generator of translation, 
means simply that translation symmetry does not hold and the canonical momentum is gauge 
dependent, not conserved. But mechanical momentum  is conserved, as is the kinetic energy 

, both being gauge-invariant.

8. Composite systems and entanglement
We’ve been considering single systems with their own wave functions and eigenvalues – what we can call pure 
states. Then the expectation value of an observable A is

.

A state vector for two different, independent measurements or subsystems may be represented sometimes 
as a product of the state vectors for each subsystem. For a product state, there exist two sets of 
normalization equations. For instance, in a product of two independent states each with two eigenvalues, 
each is represented by two complex components and so four variables, but normalization reduces each by 
one and a negligible phase factor eliminates another, leaving only four independent components (degrees of 
freedom) for the product state. 

But in general, composite systems are not product states. For a state vector for the same subsystems which 
is not a product state, there is only one normalization requirement and one phase factor, so there remain six 
independent parameters, making this a more complicated state. Such a state Is said to be entangled.

8.1.Density operator and entanglement
We will use the tool we learned in section 4.3, the density operator:

, (8.1)

which projects an operator A onto the direction of | :

In an orthonormal basis , its matrix elements are

,

which constitute the elements of the density matrix. 

Case 1. Consider a standard case of spin up or down along the z-axis but write the density matrix for spin up 
along the x-axis. For this case59

,

so brute-force insertion of this into (8.1) gives

.

59 Griffiths, QM, 169.
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Obviously,  is Hermitian, has trace 1 and is idempotent:

.

These are properties of density matrices for all pure states. We will see that the last one is not true for entangled 
states. 

As already seen in equation (4.21) , the density matrix allows us to calculate the expectation value of an 
operator:

. (8.2)

What about the case where the system might be in any of a number of states, but we ignore which one? We only 
know the probability of each state. In this case, the definition of the density operator is expanded as a weighted 
sum of density operators

, (8.3)

with  being the probability of state . A density matrix like this, which is a sum of projection operators, 
represents a mixed state, one in which multiple states are possible.60 A single projection operator represents a 
pure state. Starting from (8.3), the same method of calculation used above leads again to equation (6.2). So 
knowing the density matrix, i.e., the states and their probabilities, we can calculate expectation values of 
operators in pure or mixed states.

EXAMPLE

Consider the example of an electron (or any fermion) with equal probabilities of spin up or down61, represented 
by eigenvectors

and and .

Then

. (8.4)

But this non-pure state is not idempotent.

.

Equation (8.2) for the average is true for such states also. This case represents our ignorance of the electron’s 
spin state.

A more interesting is this one which is not a case of ignorance, but of … Suppose that André and Béatrice 
(hereafter referred to as Andy and Bea) are studying the decay of a  into an electron and a positron, each of 
which has a spin which can be either up or down along some axis common to both. represented by respective 
operators (  or ). We use notation where a state is , meaning Andy sees the component on 
the left in the ket; Bea, that on the right. The  is the singlet state,

            ,

where each pair ud (up-down) or du (down-up) represents the spin of the electron and the positron. We find62

, (8.5)

60 Susskind and Friedman, 
61 Susskind calls this a mixed state, but Ballentine deprecates this term.
62 Susskind and Friedman, QM, 173
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but63

            . (8.6)

Result (8.5) means nothing is known about what a measurement of  or  will find, each being equally likely 
to return +1 or -1. But because of (8.6), once one  is measured, the other is known. This state is maximally 
entangled, which means that although the state is a complete description of the system taken as a whole, 
nothing is known about either subsystem by itself. By nothing, we mean that only probabilities for different 
eigenvalues can be calculated. However, ignorance of individual subsystem states is accompanied by correlation 
between measurements of the individual subsystems.

It is not possible to isolate the wave functions of one subsystem of an entangled system. “One cannot really 
speak of the ‘the state’ of either particle separately.”64 Only in a pure, unmixed state can Bea study her own 
subsystem without learning anything about Andy’s.

The density matrix for the singlet state is

 ,

showing the 50/50 mixture of states. This makes it clear that

.

It is the same as (8.4), the state vector which represented our ignorance of the particle’s state, only here it 
represents the physical impossibility of predicting a measured value for either spin direction. 

Even if a subsystem changes, it must conserve distinctions (i.e., complex scalar products). Therefore it will 
change by a unitary transformation U such that

,

and Andy’s density matrix is unchanged under a unitary change of Bea’s subsystem65:

.

This means that Bea cannot influence Andy’s statistical results, meaning that “... no influence can propagate 
faster than the speed of light"66, which is the principle of locality. The evolution of Bea’s system, even if it is 
entangled with Andy’s, has no influence on Andy’s statistical predictions. This is all about expectation values, 
in the spirit of quantum mechanics. Adding the least little bit of non-unitary evolution to Bea’s subsystem 
would mean that she could influence Andy’s subsystem faster than the speed of light.

What does this mean for the coexistence of QM and SR? This is a subject of much debate … and discomfort. 

8.2.Locality and hidden variables – Bell’s theorem
We have defined locality as the principle that no influence can propagate faster than the speed of light. But 
in the singlet state for, for instance, the decay of a  into an electron and a positron, we know that if we 
measure the spin of one particle, then we know in advance of its measurement the spin of the other. But how 
can this information be passed from one measurement to the other and not disobey locality, i.e., by violating 
the speed limit c? It was suggested, in particular by Einstein, that QM must be incomplete, that there are so-
called “hidden” variables which are unmeasured because unknown, and that these could at the moment of 

63 Susskind and Friedman, QM, 177.
64 Grifffiths, QM, 448.
65 Susskind & Friedman,  225.
66 Griffiths, QM, 447.
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the decay determine the spin directions of the two particles. The challenge was taken up by John Bell.67

Bell considered a slightly different hypothetical experiment. Let the  decay as before, but

1. rotate the axes of spin measurement independently, so they are not always aligned;

2. consider not the individual spin directions +1 or -1, but the average value of their product.

Because of these arbitrary and independent rotations, the product of the spin directions along the different 
directions is not necessarily -1. Call these directions  and  and for given  and  define  as the 
average of the product of the spins. If they are the same (parallel), we have necessarily for the singlet state 
(ignoring factors of ½)

, and if anti-parallel, .

Then for arbitrary orientations, QM says

.

Now let’s add locality in the form of a hidden variable , which is the argument to functions   and 
 which will fix in advance the result of the spin measurements. Evidently,

 and .

Perfect alignment of the detectors forces

.

Given  any arbitrary probability density , the average of the product of the measurements is

.

Using only these equations and some simple algebra, one can imagine measurement along a third unit 
vector  and calculate the Bell inequality68

,

which must therefore hold for any local hidden-variable theory. But it doesn’t. For instance, for the three 
vectors in a plane,  and  perpendicular to each other with  at a 45° angle between them,

, ,

which is clearly inconsistent with Bell’s equality. If QM is correct, then Bell’s inequality is violated. Other forms 
of inequality have been calculated, forms more amenable to experiments, which have found it to be violated. 

The in fact shocking result is that nature is non-local, and no hidden-variable theory can save it from that. 
The supposed instantaneous “collapse” of the wave function in the Copenhagen interpretation was not 
enough, we now have non-locality.

67 Following from Griffiths, QM, 449-452.
68 Griffiths, 450-451.
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