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1. Vector and Hilbert spaces
In QM, the space of states of a physical system is a mathematical Hilbert space, an abstract construction of 
a type of space called a vector space. A Hilbert space is a complete vector space possessing the structure 
of an inner product. It may have any number of dimensions. 

A vector space must obey a number of rules. The sum of any two vectors is a vector, and addition is 
commutative and associative. There exists a zero vector and, for every vector, an inverse vector. The product
of a scalar and a vector is a vector and therefore so is a linear combination of vectors, a sum of such 
products. Scalar addition is associative and scalar multiplication is distributive and associative. 

A vector is linearly independent of a set of vectors if it can not be represented as a linear combination of 
vectors in the set. Each vector in a set of linearly independent vectors is independent of all the other 
members of the set. If every vector in the space can be expressed as a linear combination of vectors in the 
set, the set Is said to span the state. Such a set of linearly independent vectors which span the space is 
called a basis. (Think of  in 3d Euclidean space.) Since they are linearly independent their number is 
minimal and represents the dimension of the space.

In physics, the basis vectors of such a state may be discrete or continuous. In the latter case, we are 
interested in functions which are square-integrable over a specified interval, a to b, a space mathematicians 
call L2(a,b).
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2. Physical states, observables and operators
The state of a system is a represented by its state vector, a unit (normalized) vector in the vector space of 
states. A physical observable is described by a linear operator.

Using Dirac's bra-ket notation, a state vector is a ket represented by . A bra  is a member of the dual
space of complex conjugates of the bras. 

Vectors need not be intervals in the vector space. As soon as a set of functions obeys the above 
requirements for a vector space, it may be considered a set of vectors. This is true for the functions of 
physics.

Like good vectors in any Hilbert space, bras and kets can form an inner product denoted by

  with  .

The Dirac notation is conveniently the same whether the basis be discrete or continuous. In the discrete 
case, a ket vector may be represented as a sum of basis vectors, in which case

  and 

for complex  and , assuming the  are orthonormal basis vectors. Then the inner product is given by

In the discrete case, it is often convenient to represent the bra and the ket as matrices.

When an observable is continuous, say x, the state is itself a function of continuous variables. The bra  
corresponding to a ket  represented by the function  is the complex conjugate . In these 
equations, is a complex-valued function of an independent real variable x. Then

 → 

and the inner product is defined by

.

Normalization then requires that

.

Although this integral may be infinite (and so not normalizable), it may nevertheless be useful over a limited 
range (a,b) of x, so the space is L2(a,b).  This means integrating from a to b rather than from  to  in 
the above equation.

The important operators in QM are Hermitian operators. The Hermitian conjugate  of a linear operator 
(transformation)  is defined by

(1)

which in discrete matrix form is the  complex conjugate of the transposed (inverted) matrix 

.
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3. Principles
Several principles govern observables and basis vectors.1

Principle 1. A physical observable is represented by a linear Hermitian operator .

,

where the Hermitian conjugate is defined above.

Principle   2.   The possible results of measurements of observables are eigenvalues of the Hermitian operator 
representing the observable:

(2)

 where  λ is the eigenvalue of the eigenvector ket |λ>. The operator transforms the vector into a multiple of λ>. The operator transforms the vector into a multiple of 
itself. A Hermitian operator is one which is equal to its Hermitian conjugate

,

which guarantees that its eigenvalues are positive and real. The set of all eigenvalues of an operator is 
called its spectrum.

Principle   3a.   Unambiguously distinguishable states are represented by orthogonal vectors. i.e., for two 
eigenvalues, , the corresponding eigenvectors are orthogonal:

(3)

Principle   3b.   The eigenvectors of an operator are a complete set. This means that any vector can be 
expressed as a linear sum of eigenvectors.

(4)

where the complex coefficients are inner products

(5)

In other words, the eigenvectors of a Hermitian operator may be chosen to form an orthonormal basis. The 
set of inner-product coefficients  is the wave function of the system in the basis defined by the observable

. More on that in section 6. The number of eigenvectors in the basis is the dimension of the Hilbert space, 
or at least that part of it corresponding to this observable. So the dimension is greater than or equal to the 
number of eigenvalues. If the eigenvalues are continuous, the dimension is infinite and this may apply to 
many or all observables.

Principle 3c. Two orthogonal eigenvectors may have the same eigenvalue, in which case they are referred to 
as degenerate states. Even then, it is possible to construct a set of orthonormal basis vectors.

Principle 4. For a normalized state vector  and observable , the probability of observing value  by 
measurement is given by the Born rule

(6)

where

and

1 Principles adapted from Susskind, 69-74.
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for total probability (normalization).

With the Dirac notation, we can define the expectation value of a Hermitian operator  by

(7)

since   is Hermitian. More generally, if a basis of orthonormal state vectors is represented by  for
eigenvalues (a,b,c,...), then any state vector may be expanded as

(8)

where the set of coefficients  is called the wave function of the system in the basis defined by 
the observables, A, B, C, ….2 We can expand in terms of another set of basis vectors corresponding to 
different observables and the wave function set will be different even though they describe the same system 
state. The two sets of basis vectors correspond to different representations of the system, for the two 
different observables.

After measurement of an observable in such a superposition of states, the wave function is no longer a 
superposition (One says it has “collapsed” to a single state.) and a second measurement gives the same 
result as the first, which is logical.

A method for solving such an equation is to first rewrite it in matrix form (if possible) as

where  is the identity matrix. If  has an inverse, we can let It operate on both sides of the above 
equation and show that  must be zero, which is not an interesting case. So it must not have an inverse 
and therefore is singular and has determinant zero.

This gives an equation, the characteristic equation, which (hopefully) may be solved for the eigenvalues. 
Then, putting the eigenvalues back into equation (2), one can solve for the eigenvectors.3

4. Unitarity and evolution in time
Susskind calls the minus-first law the statement that information is never lost, meaning that distinctions are 
conserved. The QM version of this is unitarity, the fifth principle.

Principle 5. The evolution of state-vectors with time is unitary.

This means that distinctions are conserved, which in turn means that eigenvectors remain orthogonal over 
time. If

(9)

and the time-development operator  is defined by 

2 Susskind’s notation. Griffiths uses a different definition of the wave function, but this one keeps it separate from the state vector.

3 Griffiths, 476-7.
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(10)

then orthogonality leads to U being unitary, meaning that

(11)

the identity, i.e.

. (12)

Then time evolution is unitary. For small time  , we can write

(13)

which leads to  being Hermitian

(14)

and then (tossing in  to correct units)

(15)

which is the generalized (time-dependent) Schrödinger equation. The presence of  gives  the units of 
energy: It is the quantum Hamiltonian. 

For another operator , one can show

(16)

where the commutator

(17)

Is in general not equal to zero. In classical mechanics, the time derivative can be expressed in terms of 
Poisson brackets as

so that the correspondence between classical and quantum mechanics is

(18)

where the smallness of  makes the term negligible in the classical limit. Then equation (16) expressed in 
classical mechanics becomes 

(19)

So if the commutator of an observable with the Hamiltonian is zero, the quantity is conserved. The simplest 
case

assures conservation of energy. Possible energy states are represented by the eigenvalues of the 
Hamiltonian:

(20)

Since the eigenvectors form a complete set of basis vectors,

(21)
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and if the Hamiltonian does not depend explicitly on time, then

. (22)

Since , then 

(23)

5. Simultaneous observables and uncertainty
It is clear from

that if  is a simultaneous eigenvector basis for the two operators  and , then the result is 
independent of order and the two operators must commute:

.

In classical mechanics

and in quantum mechanics

.

The case of non-commutation of two operators  and  plus some geometry leads to the generalized 
uncertainty principle:

. (24)

This result is not a separate postulate, but a consequence of the statistical interpretation of QM. It can also 
be shown to be

(25)

where the standard deviation of an observable is given by

. (26)

This quickly leads to the usual version concerning position and momentum

and can be shown to be true also for energy and time

.

This is a QM result and has nothing to do with SR four-vectors.

“No experiment can ever beat this limitation.”4

6. Bases and representations
Define two linear operators

4 Susskind, 270.
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(27)

and 

(28)

which is the definition of the momentum operator, the factor  being necessary to ensure that P be 
Hermitian and the units correct. The momentum eigen-equation then is

(29)

of which normalized solutions are of the form

(30)

which is the equation in the x basis of a wave of wavelength

(31)

known as the De Broglie formula. Equations (27) and (30) are in the x basis or position representation.  
We could also write

. (32)

In the position representation, the probability for a given value of x (although we should multiply by dx and 
say for a given increment of x) is

(33)

and for a given value of momentum

.

But we can also say that

(34)

where  is the wave function in the momentum representation. 

Slipping back into Dirac notation, define the identity operator in both bases

(35)

and

. (36)

Supposing a state vector , the wave function in the position-representation is

(37)

and in the momentum representations

. (38)

Note the order here:

The wave function is the projection of the state vector onto the eigenvectors of the 
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representation. 

This should be clear in equations (37) and (38).

Using the identity operator in the x basis

so from the complex conjugate of the momentum eigenvector (32) and the wave function in the p basis (37),

. (39)

Starting from the x-basis wave function (37) and using the identity operator (36) leads to

(40)

The two representations, position (40) and momentum (39), are Fourier transforms of each other. They are 
also the means for transforming a wave function from the position representation to the momentum 
representation and vice versa.

6.1. Useful example – the harmonic oscillator

This subject will help us ease into quantum field theory later on.

6.1.1. Simple harmonic oscillators (SHO)

A SHO is defined by a force proportional to the displacement of a mass and so a Schrödinger equation of the
form

. (41)

Solutions involve Hermite polynomials of degree n and the energy of each state is 

, (42)

where .

Skipping details such as the working out of the solutions to equation (41), define two operators

(43)

and its complex (Hermitian) conjugate

(44)

in terms of operators  and  .5 Note that

.

The Hamiltonian then can be written

, (45)

5 This section inspired mostly by Lancaster and Blundell, 19-23.
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and the number operator 

(46)

returns the number of units  of energy in a given state:

. (47)

Then  is also an eigenstate of the Hamiltonian, which may be written as

(48)

so that

(49)

and the eigenvalues are equally spaced at intervals of . Since

, (50)

it turns out that  has the effect of increasing the energy of state ; it is called a raising operator.

Similarly, 

, (51)

so  is considered a lowering operator. Since application of the raising operator to the ground state  can 
create any energy state, we can write the normalized state

.

6.1.2. Occupation number representation

We want a simple way to describe, in classical mechanics, a number of particles occupying momentum 
states. Rather than listing each particle and its momentum, we will consider how many particles there are in 
each momentum state. So we could have N particles and write their momentum states by

(52)

where  is the number of particles in the ith momentum state.6 This is called the occupation number 
representation, since it says how many particles occupy each state. Acting on this state with the 
Hamiltonian and ignoring the ½ factor in equation (28) gives

.  (53)

In this manner, the results of the preceding paragraphs on SHOs can be generalized to a state of N 
uncoupled SHOs. A creation or annihilation operator then exists for each member or the state, so that, for 
instance,

 (54)

and the operators obey the commutation relations

6 Lancaster and Blundell, 24, 30.
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. (55)

Then the occupation number representation is

  (56)

or 

. (57)

Since  and  change the number of units in a state, we can call  a creation operator and  an 
annihilation operator.

6.1.3. Phonons

Now consider a linear chain of N coupled objects each of mass m and connected by springs.  The normal 
positions of particle j is ja and it can be displaced by a small distance . The Hamiltonian for the system is

.

Since the structure is a sum of oscillators, its overall behavior is likely represented by a sum of waves of 
varying periodicity. So it is reasonable to look at its reciprocal space, i.e., its decomposition in terms of 
frequencies of vibration.7 The quantities which measure the wave distribution are simply the Fourier 
transforms from  and  representations to the  representation. Enforcing periodic boundary 
conditions, one can define raising and lowering operators in the reciprocal space and derive a Hamiltonian of
the same form as equation (24) summed over the different modes of the particles.8 

. (58)

The real-space coupled, oscillating masses behave in reciprocal space, the  representation, as if they 
were independent oscillators, – as if uncoupled! These modes of the particles are called phonons. Each 
such phonon mode can possess energy in an integral number of quanta – like particles. 

This is comparable to N independent oscillators, each one possessing  quanta of energy . So we see 
an analogy between completely different systems, one of harmonic oscillators and one of identical particles.9

Identical particles SHO

Particles in momentum states Quanta in oscillators

mth momentum mode kth oscillator

7 Reciprocal space, http://goodwin.chem.ox.ac.uk/goodwin/TEACHING_files/l1_handout.pdf.

8 Lancaster and Blundell, 25-26.

9 Lancaster and Blundell, 30.
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Using creation and annihilation operators like those of equations (27) and (28) but with subscripts to denote 
the different particles, one can show that the reciprocal coordinate is given by10

. (59)

This represents a time-independent position operator and is called the mode expansion of the scalar field. 

7. Composite systems and entanglement
A state vector for two different, independent measurements or subsystems can be represented as a product 
of the two. But this is only one example of a state vector for a composite system, In general, they are not 
product states. For a product state, there exist two sets of normalization equations. For a spectrum of two 
states each with two eigenvalues, each is represented by two complex components and so four variables, but
normalization reduces each by one and a negligible phase factor eliminates another, leaving only four 
independent components (degrees of freedom) for the product state. For a state vector for the same 
subsystems which is not a product state, there is only one normalization requirement and one phase factor, 
so there remain six independent parameters, making this a more complicated state. Such a state Is said to 
be entangled.

The state of a system is a sum over basis vectors labeled by a collection of eigenvalues of mutually 
commuting operators. For instance, a may represent the eigenvalues of operator A, b of operator B and so 
on, so that the state vector for the composite system is

            

where the set of components or projections

            

is called the set of wave functions for the system in Susskind’s terminology.11 Griffiths calls  the wave 
function. So watch out.

For a single state described by a state vector , the basic formula for the expectation value of an 
observable whose operator is L is

         

where 

            

is the matrix element of the operator L and a represents a complete set of observables for the system.

A composite system of two or more subsystems uses basis vectors labeled by eigenvalues of commuting 
operators for both subsystems. Such a system may or may not be described as a product system. Consider 
the case of two systems, Alice and Bob, with respective observables a and b, The composite state is formed 
by the tensor product of the subsystem state vectors and the composite wave functions are

.

Suppose Alice’s and Bob’s subsystems have observables represented by the operators L or M, each of 

10 Lancaster and Blundell, 27, problem (2.3).

11 Susskind, 134.
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which operates only on its own subsystem and leaves the other unchanged. Then

            (60)

and similarly for Bob’s subsystem.

if the two systems are completely independent (pure), the composite wave function may be given by a 
product of two wave functions. In this case.

            .

For such a product state,

            

but for an entangled state, the correlation

,

making this one way to test for an entangled system.

As an example, suppose that Alice and Bob each measure a two-valued observable (a spin, up or down) 
represented by an operator (  or ). For the singlet state,

            ,

but

            .

This means nothing is known about what a measurement of  or  will give, each being equally likely to 
return +1 or -1. But once one is measured, the other is known. This state is maximally entangled. The 
singlet state is an eigenstate of the operator

with eigenvalue -3, although this observer is totally unknown to the separate subsystems. The full state is 
maximally characterized but nothing is known about the individual subsystems.12

It is not possible to isolate the wave functions of one subsystem of an entangled system. If we want to find 
the values of observables for one subsystem, the best we can do is use the density matrix, which describes 
the expected values. Since the observable L has no effect on the subsystem b part of the state, as in 
equation (60), the expected value of L is

                    (61)

where the density matrix

            ` (62)

represents all A needs to know to calculate her system. Although subsystem A is a mixed state, not a pure 
one, the density matrix represents everything Alice can know about her subsystem, the expectation values of 
her variables being not at all affected by Bob’s subsystem. 

Equation (61) can be written as

12 Susskind, 174, 178; notes on on-line lectures 6 and 7.
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,

so the expectation value is the trace of the density matrix time the matrix elements of the observable. This 
shows the usefulness of knowing the density matrix, but it fails to explain how that is easier than knowing the 
wave function since that still is necessary in order to construct the density matrix.. 

Even if his subsystem changes, but conserving distinctions, therefore by a unitary transformation U such that

Alice’s density matrix is unchanged.

This is what Susskind calls locality: Bob’s system, even if it is entangled with Alice’s, has no influence on 
Alice’s statistical predictions. This is all about expectation values, in the spirit of quantum mechanics. Adding 
the least little bit of non-unitary evolution to Bob’s subsystem would mean that he could influence Alice’s 
subsystem faster than the speed of light.
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