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1. The principles of Special Relativity
Special relativity (SR) is based on two principles:

1. The principle of relativity states that the laws of nature should be the same for all observers
in inertial frames (defined below). 

2. All such observers, upon measuring the speed of light in a vacuum, will find the same 
result, c = 299,792,458 km/sec.

The first requirement is necessary in order for physics to be coherent. It means that observers in 
inertial systems use the same equations. Rather than going on incessantly repeating “in an inertial
reference frame”, let’s get it done with once and for all by stating:

SR considers only observers in inertial reference frames, those which move with constant 
(unaccelerated) velocity relative to one another.

The first requirement may be stated differently:

No experiment can measure the absolute velocity of an observer; the results of any 
experiment performed by an observer do not depend on his speed relative to other 
observers who are not involved in the experiment.1

The second requirement is a result of rather astounding experimental results. There is no known 
reason for it, that’s just how it is. Because of the constant speed of light, SR prevents us from 
considering space and time as being two separate things and explains how they are related and 
linked into a more global entity, spacetime. More on that in a moment.

2. The spacetime diagram and the Lorentz transform
We use the notion of a four-vector in tensor notation:2

X = (t, x, y, z) := ( x0, x1, x2, x3)

or

.

We also use standard relativist units, where c = 1, so that

c = 3x108 m/sec = 1

meaning that time is measured such that

1 Schutz, 1.

2 More on that in my GR overview.
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1 sec =  3x108 m.

In SR, we speak of spacetime as the total of space and time, which while different are no longer 
distinct. An event is something which happens instantaneously at a specific value of time and 
space, i.e., t and . An event may be simply a set of values of the four spacetime variables. An 
inertial observer is just a spacetime coordinate system which records the coordinates of any event.
His space is Euclidean (in SR) , distances between given points are independent of time and his 
clocks are synchronized and run together.

The essential geometry of SR is shown in Figure 1. For simplicity, we ignore y and z. The black 
axes show the x and t variables of observer ; the blue, of observer , whom we suppose is 
moving with velocity v along the x-direction. The path of the origin of  as seen by  is the blue 
line labeled t’. This is because the origin of  is always at  and so this path is his time axis. 
From the diagram, the tangent of the upper angle, , is given by 

.

Any light wave on such a diagram must move with constant velocity, c = 1, and so is always 
represented by a 45° line (since we chose c=1). Imagine a light wave in the  system starting at 
x=0 and t = -a, so it will move upward at an angle of 45°. Suppose there is a mirror to reflect it at 
the x-axis where x=a also (45°, remember) so it will move upwards, always at 45° and reach x=0 
again at t=+a. Transferring this to the system of Figure 1 with the rays still at 45° since the speed 
of light is constant, will pick a point at x’=a (not shown in the figure). Since we assume the particle 
started at x=t=0, we have the two points needed to define a straight line, the blue line making an 
equal angle  with the x-axis of observer  and which is the x’ axis.3

Figure 1: Geometry of SR – the spacetime diagram (after Collier)

A point P in space is therefore represented in ’s reference frame by the intersections of the fine-
dotted lines with the x and t axes. They are obviously normal to t and x. The coordinates of  are 

3 Schutz, 6-8.
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a bit more complicated: Since lines parallel to x’ are lines of constant t’, and vice versa, the upper 
dashed line intersects the t’ axis at the value t’ of P in the   frame. Similarly, the lower dashed 
line intersects the x’ axis at the value of x’ for the point P.

The fact that the speed of light is constant for all observers leads (by means of several sorts of 
derivations) to the Lorentz transformations between the reference frames of the two observers:

,

This is often expressed as a transformation matrix:

            (1),

where we use a bar instead of a prime to designate the second system, and

            (2)

More precisely, this is a Lorentz boost, where one frame moves with a constant velocity relative to
another. It may also differ by spatial rotation. This point of view leads to the idea of the Lorentz 
transformation as a rotation including time, as explained in Section 5.

Then the transformation formula for a four-vector is

            . (3),

with  and  expressed as a column vectors. A four-vector is a set of coordinates 
(displacements) which transform by the Lorentz transformation.4

Using the Lorentz transform, one can derive somewhat laboriously all the following.

The defined interval between two events separated by the displacements 

            (4)

is an invariant quantity across inertial systems. It can be expressed in terms of a metric tensor 
which is diagonal and has eigenvalues (-1,1,1,1) as

.

A space of this kind is called Minkowski space.

The proper time is also an invariant:

            (5). 

It is clear from the definition that the proper time is the time measured by a clock at rest with 
4 In GR, a vector is a set of components and not a thing which points from one point to another, since that would be impossible in a 

curved space.
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respect to the particle or event, since then ,

There exists in any frame a set of orthonormal basis vectors

            (6)

so that a four-vector may be expressed as

            (7)

where  and is summed over. Such a four-vector is invariant in spacetime under 
Lorentz transforms, only its components are different in different frames. The equality 

can be used to show that the basis vectors transform as

            (8).

Comparing this to 

shows that the transformation matrix for basis vectors is the inverse of that for vectors. They are 
not vectors, but one-forms, or dual vectors.5

Figure 2: Light cones (by K. Aainsqatsi via Wikimedia Commons6)

Light rays satisfy  and so move at 45° angles to the t-axis and x-axis (and y-axis) 
on a spacetime diagram, extended to represent two spatial dimensions. Inside the cone along the 
t-axis, , so an event at the origin has time to influence any point within the cone without 

5 See the GR overview.

6 https://commons.wikimedia.org/wiki/File:World_line.svg.
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going faster than the speed of life. The interior of the cone, for positive or negative t, is therefore 
referred to as timelike. Outside the cones, this is not possible, so these regions are called space-
like.. The cone for t>0 is the future relative to the origin, the cone for t<0, the past. 

3. Four-velocity and four-momentum
The four-velocity, , of a particle may be defined as a vector tangent to its world line and one 
time unit long in its rest frame. Observer  sees the origin of   move along its world line in his 
frame. In the frame of , this origin is at , so its only non-zero component is along the basis 
vector . So the particle’s four-velocity is that vector  in its inertial rest frame, .

From another point of view, it would be good to define four-velocity as a derivative, as in classical 
physics. But instead of dt, an invariant quantity, , is used, so the components of the four-velocity

 are given by

            (9)

which reduces to  in the particle’s frame. Look at the time component of .

            .

But

            .

Then the spatial components are

            ,

where  is the ordinary velocity. So

            . (10).

Note that

            (11),

by the definition of . This is also an invariant.

The four-momentum, , is defined, similarly to classical mechanics, by

            , (12)

where m is the particle’s mass in its own frame. So

            (13)

and 

            

so  is the particle’s energy and  its three-momentum. Also,

            ,
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where  refers to the three-momentum, and so

            . (14)

This formula is good even for massless particles like photons. 

Note that when v << c, the energy 

             ,

the rest-mass energy plus the kinetic energy of classical mechanics.

The relativistic Lagrangian for a single particle is

and one can derive the Hamiltonian by

.

Then it is simple to confirm the preceding equations 

If particle p’ moves in the frame of p with velocity v along the x-axis, and a particle is moving with 
velocity W along the x’-axis of p’ , then its velocity in p’s frame is given by the Einstein law of 
composition of velocities:

            (15)

which can never exceed the speed of light (1, in this system).

4. Curious results of SR
Consider this spacetime diagram, in Figure 3 with an invariant hyperbola, , about the t-axis.

All points on the hyperbola7 have the same (invariant) interval or proper time, so point A is at 1on 
the t-axis and point B is at 1 on the t’-axis. The red dotted line is tangent to the curve at B and 
parallel to the x’ axis and is therefore a line of simultaneity for O’ at constant t’=1. The horizontal 
dotted line through A and C is a similar line of simultaneity for O at constant t=1. What can this tell 
us?

O’ sees point D lying on its line t’=1. But O sees D at t<1. So O’ thinks the clocks of O are running 
slow.

7 It’s really a parabola, since I could not figure out how to make a hyperbola in Inkscape. Hope nobody notices.

Special relativity -- overview 6 2020-01-02



Figure 3: Time dilation (after Collier8)

Inversely, O’ sees event C as occurring at time t’<1. But O sees it at t=1. So O thinks the clocks of 
O’ are running slow.

Using the Lorentz transform, one can calculate the quantity of this time dilation as

            .

If the diagram of Figure 3 is rotated 90° clockwise, similar considerations show that each observer 
thinks the other’s distance is contracted in a direction along its trajectory. This is length 
contraction.

Several so-called paradoxes, which are in fact incorrect ways of framing the situation, are well 
known.

Time dilation leads to the so-called twin paradox: If one of two twins moves away at great speed, 
then reverses direction and returns, she will have aged much less than her earth-bound twin. The 
reason why the inverse is not also true (aside from the impossibility of it) is because she 
undergoes acceleration and so is not always in an inertial system. Further consideration falls into 
the realm of GR.

Length contraction leads to the problem of the pole in the barn and shows that simultaneity must 
be abandoned. Leonard Susskind has updated this problem to a stretch limousine and a garage 
for a VW bug. As seen by an observer stationary relative to the garage, which has doors at both 
ends, the limo, if it moves at a speed close to that of light, will be contracted so that it might fit all 
into the garage at once. In particular, O will see the following sequence of events:

1. Limo front enters garage front door;

2. limo tail enters garage front door;

3. limo front leaves garage back door.

But the limo driver rather sees the barn as being contracted, so there is no way he can fit into it all 
at once. He sees the following sequence:

8 All the reasoning concerning this diagram comes from Collier, 123-4.
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1. Limo front enters garage front door;

2. limo front leaves garage back door;

3. limo tail enters garage front door.

Note the reversal of the sequence of events 2 and 3. Simultaneity is out the door!

5. The Lorentz transformation as a hyperbolic rotation
The Lorentz transformation may be seen as a rotation involving the time coordinate. For a spatial 
rotation, a typical Lorentz transformation matrix might be the following:

.

So a rotation including time may be written

.

The  frame ( ) is then moving with velocity v such that

and

.

Then 

,

since

.

So 

,

and we get back to the usual form of the Lorentz transform.
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